Semin intervent Radiol 2024; 41(02): 154-169
DOI: 10.1055/s-0044-1787165
Review Article

Recent Advances in Minimally Invasive Management of Osteolytic Periacetabular Skeletal Metastases

Will Jiang
1   Department of Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, Connecticut
,
Sangmin Lee
2   Department of Radiology and Biomedical Imaging, Yale Interventional Oncology, New Haven, Connecticut
,
Dennis Caruana
1   Department of Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, Connecticut
,
Kun Da Zhuang
3   Department of Vascular and Interventional Radiology, Singapore General Hospital, Singapore, Singapore
,
Roberto Cazzato
4   Department of Interventional Radiology, Nouvel Hôpital Civil (Hôpitaux Universitaires de Strasbourg), Strasbourg, France
,
Igor Latich
2   Department of Radiology and Biomedical Imaging, Yale Interventional Oncology, New Haven, Connecticut
› Author Affiliations

Abstract

Painful skeletal osteolytic metastases, impending pathological fractures, and nondisplaced fractures present as a devastating clinical problem in advanced stage cancer patients. Open surgical approaches provide excellent mechanical stabilization but are often associated with high complication rates and slow recovery times. Percutaneous minimally invasive interventions have arisen as a pragmatic and logical treatment option for patients with late-stage cancer in whom open surgery may be contraindicated. These percutaneous interventions minimize soft tissue dissection, allow for the immediate initiation or resumption of chemotherapies, and present with fewer complications. This review provides the most up-to-date technical and conceptual framework for the minimally invasive management of osseous metastases with particular focus on periacetabular lesions. Fundamental topics discussed are as follows: (1) pathogenesis of cancer-induced bone loss and the importance of local cytoreduction to restore bone quality, (2) anatomy and biomechanics of the acetabulum as a weight-bearing zone, (3) overview of ablation options and cement/screw techniques, and (4) combinatorial approaches. Future studies should include additional studies with more long-term follow-up to better assess mechanical durability of minimally invasive interventions. An acetabulum-specific functional and pain scoring framework should be adopted to allow for better cross-study comparison.



Publication History

Article published online:
10 July 2024

© 2024. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Walker RH. Pelvic reconstruction/total hip arthroplasty for metastatic acetabular insufficiency. Clin Orthop Relat Res 1993; (294) 170-175
  • 2 Enneking WF, Dunham WK. Resection and reconstruction for primary neoplasms involving the innominate bone. J Bone Joint Surg Am 1978; 60 (06) 731-746
  • 3 Harrington KD. The management of acetabular insufficiency secondary to metastatic malignant disease. J Bone Joint Surg Am 1981; 63 (04) 653-664
  • 4 Houdek MT, Ferguson PC, Abdel MP. et al. Comparison of porous tantalum acetabular implants and Harrington reconstruction for metastatic disease of the acetabulum. J Bone Joint Surg Am 2020; 102 (14) 1239-1247
  • 5 Tillman RM, Myers GJ, Abudu AT, Carter SR, Grimer RJ. The three-pin modified ‘Harrington’ procedure for advanced metastatic destruction of the acetabulum. J Bone Joint Surg Br 2008; 90 (01) 84-87
  • 6 Khan FA, Rose PS, Yanagisawa M, Lewallen DG, Sim FH. Surgical technique: Porous tantalum reconstruction for destructive nonprimary periacetabular tumors. Clin Orthop Relat Res 2012; 470 (02) 594-601
  • 7 Wegrzyn J, Malatray M, Al-Qahtani T, Pibarot V, Confavreux C, Freyer G. Total hip arthroplasty for periacetabular metastatic disease. an original technique of reconstruction according to the Harrington classification. J Arthroplasty 2018; 33 (08) 2546-2555
  • 8 Maccauro G, Liuzza F, Scaramuzzo L. et al. Percutaneous acetabuloplasty for metastatic acetabular lesions. BMC Musculoskelet Disord 2008; 9 (01) 66
  • 9 Cotten A, Deprez X, Migaud H, Chabanne B, Duquesnoy B, Chastanet P. Malignant acetabular osteolyses: percutaneous injection of acrylic bone cement. Radiology 1995; 197 (01) 307-310
  • 10 Hokotate H, Baba Y, Churei H, Nakajo M, Ohkubo K, Hamada K. Pain palliation by percutaneous acetabular osteoplasty for metastatic hepatocellular carcinoma. Cardiovasc Intervent Radiol 2001; 24 (05) 346-348
  • 11 Assouline J, Tselikas L, Roux C. et al. Prophylactic percutaneous consolidation of large osteolytic tumors of the pelvic ring using fixation by internal cemented screws. Radiol Imaging Cancer 2021; 3 (03) e200137
  • 12 Hartung MP, Tutton SM, Hohenwalter EJ, King DM, Neilson JC. Safety and efficacy of minimally invasive acetabular stabilization for periacetabular metastatic disease with thermal ablation and augmented screw fixation. J Vasc Interv Radiol 2016; 27 (05) 682-688.e1
  • 13 Koo JS, Chung SH. The efficacy of radiofrequency ablation for bone tumors unsuitable for radical excision. Clin Orthop Surg 2021; 13 (02) 278-285
  • 14 Back J, Nguyen MN, Li L. et al. Inflammatory conversion of quiescent osteoblasts by metastatic breast cancer cells through pERK1/2 aggravates cancer-induced bone destruction. Bone Res 2021; 9 (01) 43
  • 15 Chen YC, Sosnoski DM, Mastro AM. Breast cancer metastasis to the bone: mechanisms of bone loss. Breast Cancer Res 2010; 12 (06) 215
  • 16 Logothetis CJ, Lin SH. Osteoblasts in prostate cancer metastasis to bone. Nat Rev Cancer 2005; 5 (01) 21-28
  • 17 Malik NH, Fu R, Hainc N. et al. Association of primary tumor volume with survival in patients with T3 glottic cancer treated with radiotherapy: a study of the Canadian Head & Neck Collaborative Research Initiative. JAMA Otolaryngol Head Neck Surg 2023; 149 (02) 103-109
  • 18 Hamy AS, Darrigues L, Laas E. et al. Prognostic value of the Residual Cancer Burden index according to breast cancer subtype: Validation on a cohort of BC patients treated by neoadjuvant chemotherapy. PLoS One 2020; 15 (06) e0234191
  • 19 Symmans WF, Peintinger F, Hatzis C. et al. Measurement of residual breast cancer burden to predict survival after neoadjuvant chemotherapy. J Clin Oncol 2007; 25 (28) 4414-4422
  • 20 Narod SA. Countercurrents Series. Disappearing breast cancers. Curr Oncol 2012; 19 (02) 59-60
  • 21 Jiang W, Caruana DL, Dussik CM. et al. Bone mass changes following percutaneous radiofrequency ablation, osteoplasty, reinforcement, and internal fixation of periacetabular osteolytic metastases. J Clin Med 2023; 12 (14) 4613
  • 22 Ghomashchi S, Whyne CM, Chinnery T, Habach F, Akens MK. Impact of radiofrequency ablation (RFA) on bone quality in a murine model of bone metastases. PLoS One 2021; 16 (09) e0256076
  • 23 Dierselhuis EF, Jutte PC, van der Eerden PJ, Suurmeijer AJ, Bulstra SK. Hip fracture after radiofrequency ablation therapy for bone tumors: two case reports. Skeletal Radiol 2010; 39 (11) 1139-1143
  • 24 Cazzato RL, Palussière J, Auloge P. et al. Complications following percutaneous image-guided radiofrequency ablation of bone tumors: a 10-year dual-center experience. Radiology 2020; 296 (01) 227-235
  • 25 Morris CD, Einhorn TA. Bisphosphonates in orthopaedic surgery. J Bone Joint Surg Am 2005; 87 (07) 1609-1618
  • 26 Costa L. Bisphosphonates: reducing the risk of skeletal complications from bone metastasis. Breast 2007; 16 (Suppl. 03) S16-S20
  • 27 Polascik TJ. Bisphosphonates in oncology: evidence for the prevention of skeletal events in patients with bone metastases. Drug Des Devel Ther 2009; 3: 27-40
  • 28 Malluche HH, Chen J, Lima F, Liu LJ, Monier-Faugere MC, Pienkowski D. Bone quality and fractures in women with osteoporosis treated with bisphosphonates for 1 to 14 years. JBMR Plus 2021; 5 (11) e10549
  • 29 Smith MR, Saad F, Coleman R. et al. Denosumab and bone-metastasis-free survival in men with castration-resistant prostate cancer: results of a phase 3, randomised, placebo-controlled trial. Lancet 2012; 379 (9810): 39-46
  • 30 Gnant M, Pfeiler G, Dubsky PC. et al; Austrian Breast and Colorectal Cancer Study Group. Adjuvant denosumab in breast cancer (ABCSG-18): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet 2015; 386 (9992): 433-443
  • 31 Coleman R, Finkelstein DM, Barrios C. et al. Adjuvant denosumab in early breast cancer (D-CARE): an international, multicentre, randomised, controlled, phase 3 trial. Lancet Oncol 2020; 21 (01) 60-72
  • 32 Raje N, Terpos E, Willenbacher W. et al. Denosumab versus zoledronic acid in bone disease treatment of newly diagnosed multiple myeloma: an international, double-blind, double-dummy, randomised, controlled, phase 3 study. Lancet Oncol 2018; 19 (03) 370-381
  • 33 Chen J, Zhou L, Liu X, Wen X, Li H, Li W. Meta-analysis of clinical trials to assess denosumab over zoledronic acid in bone metastasis. Int J Clin Pharm 2021; 43 (01) 2-10
  • 34 Anastasilakis AD, Makras P, Yavropoulou MP, Tabacco G, Naciu AM, Palermo A. Denosumab discontinuation and the rebound phenomenon: a narrative review. J Clin Med 2021; 10 (01) 152
  • 35 Wang G, Huang W, Song Q, Liang J. Three-dimensional finite analysis of acetabular contact pressure and contact area during normal walking. Asian J Surg 2017; 40 (06) 463-469
  • 36 Yoshida H, Faust A, Wilckens J, Kitagawa M, Fetto J, Chao EY. Three-dimensional dynamic hip contact area and pressure distribution during activities of daily living. J Biomech 2006; 39 (11) 1996-2004
  • 37 Morris MT, Alder KD, Moushey A. et al. Biomechanical restoration of metastatic cancer-induced peri-acetabular bone defects by ablation-osteoplasty-reinforcement-internal fixation technique (AORIF): To screw or not to screw?. Clin Biomech (Bristol, Avon) 2022; 92: 105565
  • 38 Tillman R, Tsuda Y, Puthiya Veettil M. et al. The long-term outcomes of modified Harrington procedure using antegrade pins for periacetabular metastasis and haematological diseases. Bone Joint J 2019; 101-B (12) 1557-1562
  • 39 Wei R, Lim CY, Yang Y. et al. Surgical treatment and proposed modified classification for Harrington Class III periacetabular metastases. Orthop Surg 2021; 13 (02) 553-562
  • 40 Dussik CM, Toombs C, Alder KD. et al. Percutaneous ablation, osteoplasty, reinforcement, and internal fixation for pain and ambulatory function in periacetabular osteolytic malignancies. Radiology 2023; 307 (03) e221401
  • 41 Lee FY, Latich I, Toombs C. et al. Minimally invasive image-guided ablation, osteoplasty, reinforcement, and internal fixation (AORIF) for osteolytic lesions in the pelvis and periarticular regions of weight-bearing bones. J Vasc Interv Radiol 2020; 31 (04) 649-658.e1
  • 42 Callstrom MR, Charboneau JW, Goetz MP. et al. Painful metastases involving bone: feasibility of percutaneous CT- and US-guided radio-frequency ablation. Radiology 2002; 224 (01) 87-97
  • 43 Levy J, David E, Hopkins T. et al. Radiofrequency ablation provides rapid and durable pain relief for the palliative treatment of lytic bone metastases independent of radiation therapy: final results from the OsteoCool tumor ablation post-market study. Cardiovasc Intervent Radiol 2023; 46 (05) 600-609
  • 44 Tomasian A, Jennings JW. Percutaneous minimally invasive thermal ablation for management of osseous metastases: recent advances. Int J Hyperthermia 2019; 36 (02) 3-12
  • 45 Wu MH, Xiao LF, Yan FF. et al. Use of percutaneous microwave ablation for the treatment of bone tumors: a retrospective study of clinical outcomes in 47 patients. Cancer Imaging 2019; 19 (01) 87
  • 46 Pusceddu C, Sotgia B, Fele RM, Ballicu N, Melis L. Combined microwave ablation and cementoplasty in patients with painful bone metastases at high risk of fracture. Cardiovasc Intervent Radiol 2016; 39 (01) 74-80
  • 47 Zuo D, Sun M, Mu H. et al. O-arm-guided percutaneous microwave ablation and cementoplasty for the treatment of pelvic acetabulum bone metastasis. Front Surg 2022; 9: 929044
  • 48 Ryan A, Byrne C, Pusceddu C, Buy X, Tsoumakidou G, Filippiadis D. CIRSE standards of practice on thermal ablation of bone tumours. Cardiovasc Intervent Radiol 2022; 45 (05) 591-605
  • 49 Erinjeri JP, Clark TW. Cryoablation: mechanism of action and devices. J Vasc Interv Radiol 2010; 21 (8, Suppl): S187-S191
  • 50 Privalov PL. Cold denaturation of proteins. Crit Rev Biochem Mol Biol 1990; 25 (04) 281-305
  • 51 Shah TT, Arbel U, Foss S. et al. Modeling cryotherapy ice ball dimensions and isotherms in a novel gel-based model to determine optimal cryo-needle configurations and settings for potential use in clinical practice. Urology 2016; 91: 234-240
  • 52 Al-Assam H, Botchu R, Azzopardi C, Stevenson JD, James SL, Patel A. Measurement analysis of ice ball size during CT-guided cryoablation procedures for better prediction of final ice ball size and avoidance of complications. Indian J Radiol Imaging 2023; 33 (03) 321-326
  • 53 Kim KM, Chung S, Kim SY. et al. Comparison of radiofrequency ablation and cryoablation for the recovery of atrial contractility and survival. Korean J Thorac Cardiovasc Surg 2018; 51 (04) 266-272
  • 54 Evonich III RF, Nori DM, Haines DE. A randomized trial comparing effects of radiofrequency and cryoablation on the structural integrity of esophageal tissue. J Interv Card Electrophysiol 2007; 19 (02) 77-83
  • 55 Aarts BM, Klompenhouwer EG, Rice SL. et al. Cryoablation and immunotherapy: an overview of evidence on its synergy. Insights Imaging 2019; 10 (01) 53
  • 56 Sandomirsky M, Crifasi JA, Long C, Mitchell EK. Case report of fatal complication in prostatic cryotherapy. First reported death due to argon gas emboli. Am J Forensic Med Pathol 2012; 33 (01) 68-72
  • 57 Jennings JW, Prologo JD, Garnon J. et al. Cryoablation for palliation of painful bone metastases: the MOTION multicenter study. Radiol Imaging Cancer 2021; 3 (02) e200101
  • 58 Coupal TM, Pennycooke K, Mallinson PI. et al. The hopeless case? Palliative cryoablation and cementoplasty procedures for palliation of large pelvic bone metastases. Pain Physician 2017; 20 (07) E1053-E1061
  • 59 Kurup AN, Morris JM, Schmit GD. et al. Balloon-assisted osteoplasty of periacetabular tumors following percutaneous cryoablation. J Vasc Interv Radiol 2015; 26 (04) 588-594
  • 60 Friedman MV, Hillen TJ, Wessell DE, Hildebolt CF, Jennings JW. Hip chondrolysis and femoral head osteonecrosis: a complication of periacetabular cryoablation. J Vasc Interv Radiol 2014; 25 (10) 1580-1588
  • 61 Prologo JD, Patel I, Buethe J, Bohnert N. Ablation zones and weight-bearing bones: points of caution for the palliative interventionalist. J Vasc Interv Radiol 2014; 25 (05) 769-775.e2
  • 62 Elboraey M, Garner H, Ritchie C, Spencer-Gardner L, Sherman C, Stanborough R. Hip joint distraction technique during cryoablation of acetabular bone tumor to prevent femoral head osteonecrosis. J Vasc Interv Radiol 2022; 33 (11) 1447-1449
  • 63 Auloge P, Cazzato RL, Rousseau C. et al. Complications of percutaneous bone tumor cryoablation: a 10-year experience. Radiology 2019; 291 (02) 521-528
  • 64 Kurup AN, Schmit GD, Morris JM. et al. Avoiding complications in bone and soft tissue ablation. Cardiovasc Intervent Radiol 2017; 40 (02) 166-176
  • 65 Tsoumakidou G, Buy X, Garnon J, Enescu J, Gangi A. Percutaneous thermal ablation: how to protect the surrounding organs. Tech Vasc Interv Radiol 2011; 14 (03) 170-176
  • 66 Yoon JT, Nesbitt J, Raynor BL, Roth M, Zertan CC, Jennings JW. Utility of motor and somatosensory evoked potentials for neural thermoprotection in ablations of musculoskeletal tumors. J Vasc Interv Radiol 2020; 31 (06) 903-911
  • 67 Geraets SEW, Bos PK, van der Stok J. Preoperative embolization in surgical treatment of long bone metastasis: a systematic literature review. EFORT Open Rev 2020; 5 (01) 17-25
  • 68 Ratasvuori M, Sillanpää N, Wedin R, Trovik C, Hansen BH, Laitinen M. Surgery of non-spinal skeletal metastases in renal cell carcinoma: no effect of preoperative embolization?. Acta Orthop 2016; 87 (02) 183-188
  • 69 Jernigan EW, Tennant JN, Esther RJ. Not all patients undergoing stabilization of impending pathologic fractures for renal cell carcinoma metastases to the femur need preoperative embolization. Clin Orthop Relat Res 2018; 476 (03) 529-534
  • 70 Koike Y, Takizawa K, Ogawa Y. et al. Transcatheter arterial chemoembolization (TACE) or embolization (TAE) for symptomatic bone metastases as a palliative treatment. Cardiovasc Intervent Radiol 2011; 34 (04) 793-801
  • 71 Zhang L, Wang B, Cao P, Zhang Q, Liu X, Li M. Combination therapy with percutaneous osteoplasty and transcatheter arterial chemoembolization for the treatment of pelvic bone metastases: preliminary report. Support Care Cancer 2021; 29 (05) 2529-2536
  • 72 Napoli A, Anzidei M, Marincola BC. et al. Primary pain palliation and local tumor control in bone metastases treated with magnetic resonance-guided focused ultrasound. Invest Radiol 2013; 48 (06) 351-358
  • 73 Li C, Zhang W, Fan W, Huang J, Zhang F, Wu P. Noninvasive treatment of malignant bone tumors using high-intensity focused ultrasound. Cancer 2010; 116 (16) 3934-3942
  • 74 Hurwitz MD, Ghanouni P, Kanaev SV. et al. Magnetic resonance-guided focused ultrasound for patients with painful bone metastases: phase III trial results. J Natl Cancer Inst 2014; 106 (05) dju082
  • 75 Han X, Huang R, Meng T, Yin H, Song D. The roles of magnetic resonance-guided focused ultrasound in pain relief in patients with bone metastases: a systemic review and meta-analysis. Front Oncol 2021; 11: 617295
  • 76 McMahon S. et al. Thermal necrosis and PMMA – a cause for concern?. Orthop Proc 2012; 94-B (Suppl XXIII): 64-64
  • 77 Kucko NW, de Lacerda Schickert S, Sobral Marques T. et al. Tough and osteocompatible calcium phosphate cements reinforced with poly(vinyl alcohol) fibers. ACS Biomater Sci Eng 2019; 5 (05) 2491-2505
  • 78 Lee C. The mechanical properties of PMMA bone cement. In: Breusch S, Malchau H. eds. The Well-Cemented Total Hip Arthroplasty: Theory and Practice. Berlin, Heidelberg: Springer; 2005: 60-66
  • 79 Hesler M-C, Buy X, Catena V. et al. Assessment of risk factors for occurrence or worsening of acetabular fracture following percutaneous cementoplasty of acetabulum malignancies. Eur J Radiol 2019; 120: 108694
  • 80 Hsieh M-K, Kao FC, Chiu PY. et al. Risk factors of neurological deficit and pulmonary cement embolism after percutaneous vertebroplasty. J Orthop Surg Res 2019; 14 (01) 406
  • 81 Bistolfi A, Ferracini R, Albanese C, Vernè E, Miola M. PMMA-based bone cements and the problem of joint arthroplasty infections: status and new perspectives. Materials (Basel) 2019; 12 (23) 4002
  • 82 Urrutia J, Bono CM, Mery P, Rojas C. Early histologic changes following polymethylmethacrylate injection (vertebroplasty) in rabbit lumbar vertebrae. Spine 2008; 33 (08) 877-882
  • 83 Donaldson AJ, Thomson HE, Harper NJ, Kenny NW. Bone cement implantation syndrome. Br J Anaesth 2009; 102 (01) 12-22
  • 84 Park JW, Lim HJ, Kang HG, Kim JH, Kim HS. Percutaneous cementoplasty for the pelvis in bone metastasis: 12-year experience. Ann Surg Oncol 2022; 29 (02) 1413-1422
  • 85 Zhu J, Yang S, Cai K. et al. Bioactive poly (methyl methacrylate) bone cement for the treatment of osteoporotic vertebral compression fractures. Theranostics 2020; 10 (14) 6544-6560
  • 86 Cui X, Huang C, Zhang M. et al. Enhanced osteointegration of poly(methylmethacrylate) bone cements by incorporating strontium-containing borate bioactive glass. J R Soc Interface 2017; 14 (131) 20161057
  • 87 Mohan M, Samant RS, Yoon D. et al. Extensive remineralization of large pelvic lytic lesions following total therapy treatment in patients with multiple myeloma. J Bone Miner Res 2017; 32 (06) 1261-1266
  • 88 Tao J, Srinivasan V, Yi X. et al. Bone-targeted bortezomib inhibits bortezomib-resistant multiple myeloma in mice by providing higher levels of bortezomib in bone. J Bone Miner Res 2022; 37 (04) 629-642
  • 89 Greenberg DD, Lee FY. Bisphosphonate-loaded bone cement as a local adjuvant therapy for giant cell tumor of bone: a 1 to 12-year follow-up study. Am J Clin Oncol 2019; 42 (03) 231-237
  • 90 Kumar A, Sinha S, Haider Y, Jameel J, Kumar S. Role of zoledronic acid supplementation in reducing post-surgical recurrence of giant cell tumor of bone: a meta-analysis of comparative studies. Cureus 2021; 13 (07) e16742
  • 91 Chaurasiya SP, Ghosh R. Low viscosity versus high viscosity PMMA bone cement for total joint arthroplasty: influence of glass transition temperature, residual monomer content, transmittance of chemical functional groups, and crystallinity index on quasi-static flexural strength. Forces Mech 2023; 10: 100176
  • 92 Li Y, Tan Z, Cheng Y, Zhang J, Wu H. High-viscosity versus low-viscosity cement for the treatment of vertebral compression fractures: a meta-analysis of randomized controlled trials. Medicine (Baltimore) 2022; 101 (46) e31544
  • 93 Zeng TH, Wang YM, Yang XJ, Xiong JY, Guo DQ. The clinical comparative study on high and low viscosity bone cement application in vertebroplasty. Int J Clin Exp Med 2015; 8 (10) 18855-18860
  • 94 Lea WB, Neilson JC, King DM, Tutton SM. Minimally invasive stabilization using screws and cement for pelvic metastases: technical considerations for the pelvic “screw and glue” technique. Semin Intervent Radiol 2019; 36 (03) 229-240
  • 95 Roux C, Tselikas L, Yevich S. et al. Fluoroscopy and cone-beam CT-guided fixation by internal cemented screw for pathologic pelvic fractures. Radiology 2019; 290 (02) 418-425
  • 96 Huang Z, Zhu KP, Hu JP. et al. Surgical robot-assisted tripod percutaneous reconstruction technique combined with bone cement filling technique for the treatment of acetabular metastasis. Front Bioeng Biotechnol 2023; 11: 1153394
  • 97 Asuzu DT, Buchholz AL. MAZOR-X robotic-navigated percutaneous C2 screw placement for hangman's fracture: a case report. J Spine Surg 2021; 7 (03) 439-444
  • 98 Gao S, Wei J, Li W. et al. Accuracy of robot-assisted percutaneous pedicle screw placement under regional anesthesia: a retrospective cohort study. Pain Res Manag 2021; 2021: 6894001
  • 99 Lee FY. Ablation, osteoplasty, reinforcement, and internal fixation as a new alternative first-line management for osteolytic pelvic metastases. Instr Course Lect 2022; 71: 213-220
  • 100 Toombs C, Conway D, Munger AM, Alder KD, Latich I, Lee FY. Ablation, osteoplasty, reinforcement, and internal fixation for percutaneous endoskeletal reconstruction of periacetabular and other periarticular osteolytic metastases. Instr Course Lect 2021; 70: 503-514
  • 101 Araneta KTS, Rizkallah M, Boucher LM, Turcotte RE, Aoude A. Joint-sparing reconstruction for extensive periacetabular metastases: literature review and a novel minimally invasive surgical technique. J Bone Oncol 2022; 34: 100428
  • 102 English DI, Lea WB, King DM, Tutton SM, Neilson JC. Minimally invasive stabilization with or without ablation for metastatic periacetabular tumors. J Bone Joint Surg Am 2021; 103 (13) 1184-1192
  • 103 Yildizhan S, Boyaci MG, Rakip U, Aslan A, Canbek I. Role of radiofrequency ablation and cement injection for pain control in patients with spinal metastasis. BMC Musculoskelet Disord 2021; 22 (01) 912
  • 104 Thanos L, Mylona S, Galani P. et al. Radiofrequency ablation of osseous metastases for the palliation of pain. Skeletal Radiol 2008; 37 (03) 189-194
  • 105 Gharaei H, Imani F, Vakily M. Radiofrequency thermal ablation in painful myeloma of the clavicle. Korean J Pain 2014; 27 (01) 72-76
  • 106 Masala S, Manenti G, Roselli M. et al. Percutaneous combined therapy for painful sternal metastases: a radiofrequency thermal ablation (RFTA) and cementoplasty protocol. Anticancer Res 2007; 27 (6C, 6c): 4259-4262
  • 107 Swan JA, Liu DM, Clarkson PW, Munk PL. Cryoablation and cementoplasty of a pathologic fracture in the sternum. Singapore Med J 2013; 54 (10) e215-e217
  • 108 Ahmed O, Feinberg N, Lea WB. Interventional techniques for the ablation and augmentation of extraspinal lytic bone metastases. Semin Intervent Radiol 2019; 36 (03) 221-228
  • 109 Brace CL, Hinshaw JL, Laeseke PF, Sampson LA, Lee Jr FT. Pulmonary thermal ablation: comparison of radiofrequency and microwave devices by using gross pathologic and CT findings in a swine model. Radiology 2009; 251 (03) 705-711
  • 110 Zheng K, Yu X, Hu Y. et al. Clinical guideline for microwave ablation of bone tumors in extremities. Orthop Surg 2020; 12 (04) 1036-1044
  • 111 Tschon M, Salamanna F, Ronchetti M. et al. Feasibility of electroporation in bone and in the surrounding clinically relevant structures: a preclinical investigation. Technol Cancer Res Treat 2016; 15 (06) 737-748