CC BY 4.0 · The Arab Journal of Interventional Radiology 2024; 08(02): 054-062
DOI: 10.1055/s-0044-1787158
Review Article

Simplifying Stem Cell Therapy for IRs: Exploring New Horizons in Interventional Radiology and Cell Therapy

Hossein Ghanaati
1   Department of Radiology, Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran
,
1   Department of Radiology, Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran
› Author Affiliations

Abstract

The effective treatment of various diseases requires not only medications but also precise delivery methods to the body and specific organs. In this regard, radiology plays a crucial role, acting as the eyes of physicians. In contrast, interventional radiology serves as its hands, acting as one of the most effective drug delivery systems. Among interventional radiology disciplines, arterial drug delivery through arteries holds paramount importance as organs primarily receive nourishment directly from them. Furthermore, regenerative medicine is a burgeoning field dedicated to repairing diverse body tissues without relying on pharmaceutical drugs. Stem cells, inherent in various parts of our bodies, are vital for tissue regeneration and reconstruction. Depending on the treatment approach, stem cells can be sourced from the patient's body (autologous) or another individual (allogeneic). There exist various types of stem cells across species, with regenerative properties observed in animals and even plants. However, targeted cell therapy is preferred over systematic injections throughout the body for better efficacy. This article aims to familiarize interventionalists with stem cells and provide them with a clear and helpful explanation of their functions, mechanisms of action, different sources, and other relevant aspects. This will help them select the most appropriate cells for their therapeutic purposes. By comprehensively understanding the significance of stem cells in interventional radiology, we can implement optimal methodologies to address diverse medical conditions efficiently.

Note

The part of the article is presented in PAIRS congress 2024, 2/10/2024, HALL B, Stem cell therapy in IR, What IRs should know?, Presented by: Dr. Maedeh Rouzbahani.


Ethical Approval Statement

This review article adheres to the principles outlined in the Declaration of Helsinki.




Publication History

Article published online:
01 July 2024

© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Simons BD. Stem cell renewal theory turns 60. Nat Rev Mol Cell Biol 2013; 14 (12) 754
  • 2 Batygina T. Stem cells and morphogenetic developmental programs in plants. Stem Cell Research Journal. 2011; 3 (1–2): 45-120
  • 3 Wolpert L, Hicklin J, Hornbruch A. Positional information and pattern regulation in the regeneration of hydra. Symp Soc Exp Biol 1971; 25: 391-415
  • 4 Brockes JP. Amphibian limb regeneration: rebuilding a complex structure. Science 1997; 276 (5309) 81-87
  • 5 Dessie G, Derbew Molla M, Shibabaw T, Ayelign B. Role of stem-cell transplantation in leukemia treatment. Stem Cells Cloning 2020; 13: 67-77
  • 6 Sylvester KG, Longaker MT. Stem cells: review and update. Arch Surg 2004; 139 (01) 93-99
  • 7 Smith AG. Embryo-derived stem cells: of mice and men. Annu Rev Cell Dev Biol 2001; 17 (01) 435-462
  • 8 Hayashi K, Saitou M. Generation of eggs from mouse embryonic stem cells and induced pluripotent stem cells. Nat Protoc 2013; 8 (08) 1513-1524
  • 9 Fazeli Z, Abedindo A, Omrani MD, Ghaderian SMH. Mesenchymal stem cells (MSCs) therapy for recovery of fertility: a systematic review. Stem Cell Rev Rep 2018; 14 (01) 1-12
  • 10 Knoblich JA. Mechanisms of asymmetric stem cell division. Cell 2008; 132 (04) 583-597
  • 11 Okita K, Yamanaka S. Induced pluripotent stem cells: opportunities and challenges. Philos Trans R Soc Lond B Biol Sci 2011; 366 (1575) 2198-2207
  • 12 Clevers H. Stem cells. What is an adult stem cell?. Science 2015; 350 (6266) 1319-1320
  • 13 Zangi L, Margalit R, Reich-Zeliger S. et al. Direct imaging of immune rejection and memory induction by allogeneic mesenchymal stromal cells. Stem Cells 2009; 27 (11) 2865-2874
  • 14 Nauta AJ, Westerhuis G, Kruisselbrink AB, Lurvink EG, Willemze R, Fibbe WE. Donor-derived mesenchymal stem cells are immunogenic in an allogeneic host and stimulate donor graft rejection in a nonmyeloablative setting. Blood 2006; 108 (06) 2114-2120
  • 15 Schu S, Nosov M, O'Flynn L. et al. Immunogenicity of allogeneic mesenchymal stem cells. J Cell Mol Med 2012; 16 (09) 2094-2103
  • 16 Lohan P, Treacy O, Griffin MD, Ritter T, Ryan AE. Anti-donor immune responses elicited by allogeneic mesenchymal stem cells and their extracellular vesicles: are we still learning?. Front Immunol 2017; 8: 1626
  • 17 Li C, Zhao H, Cheng L, Wang B. Allogeneic vs. autologous mesenchymal stem/stromal cells in their medication practice. Cell Biosci 2021; 11 (01) 187
  • 18 Moll G, Hoogduijn MJ, Ankrum JA. Safety, efficacy and mechanisms of action of mesenchymal stem cell therapies. Front Immunol 2020; 11: 243
  • 19 Singer NG, Caplan AI. Mesenchymal stem cells: mechanisms of inflammation. Annu Rev Pathol 2011; 6: 457-478
  • 20 Uccelli A, de Rosbo NK. The immunomodulatory function of mesenchymal stem cells: mode of action and pathways. Ann N Y Acad Sci 2015; 1351 (01) 114-126
  • 21 Hoogduijn MJ, Lombardo E. Mesenchymal stromal cells anno 2019: dawn of the therapeutic era? Concise review. Stem Cells Transl Med 2019; 8 (11) 1126-1134
  • 22 Bongso A, Lee EH. Stem cells: their definition, classification and sources. Stem Cells 2005; •••: 1-13
  • 23 Moise Jr KJ. Umbilical cord stem cells. Obstet Gynecol 2005; 106 (06) 1393-1407
  • 24 Kurtzberg J, Lyerly AD, Sugarman J. Untying the Gordian knot: policies, practices, and ethical issues related to banking of umbilical cord blood. J Clin Invest 2005; 115 (10) 2592-2597
  • 25 Laughlin MJ, Barker J, Bambach B. et al. Hematopoietic engraftment and survival in adult recipients of umbilical-cord blood from unrelated donors. N Engl J Med 2001; 344 (24) 1815-1822
  • 26 Weiss ML, Troyer DL. Stem cells in the umbilical cord. Stem Cell Rev 2006; 2 (02) 155-162
  • 27 Maitra B, Szekely E, Gjini K. et al. Human mesenchymal stem cells support unrelated donor hematopoietic stem cells and suppress T-cell activation. Bone Marrow Transplant 2004; 33 (06) 597-604
  • 28 Medicetty S, Bledsoe AR, Fahrenholtz CB, Troyer D, Weiss ML. Transplantation of pig stem cells into rat brain: proliferation during the first 8 weeks. Exp Neurol 2004; 190 (01) 32-41
  • 29 Fu Y-S, Cheng Y-C, Lin M-YA. et al. Conversion of human umbilical cord mesenchymal stem cells in Wharton's jelly to dopaminergic neurons in vitro: potential therapeutic application for Parkinsonism. Stem Cells 2006; 24 (01) 115-124
  • 30 Yin Y, Hao H, Cheng Y. et al. The homing of human umbilical cord-derived mesenchymal stem cells and the subsequent modulation of macrophage polarization in type 2 diabetic mice. Int Immunopharmacol 2018; 60: 235-245
  • 31 Azizi SA, Stokes D, Augelli BJ, DiGirolamo C, Prockop DJ. Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats–similarities to astrocyte grafts. Proc Natl Acad Sci U S A 1998; 95 (07) 3908-3913
  • 32 Kopen GC, Prockop DJ, Phinney DG. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci U S A 1999; 96 (19) 10711-10716
  • 33 Hofstetter CP, Schwarz EJ, Hess D. et al. Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc Natl Acad Sci U S A 2002; 99 (04) 2199-2204
  • 34 Zhao L-R, Duan W-M, Reyes M, Keene CD, Verfaillie CM, Low WC. Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats. Exp Neurol 2002; 174 (01) 11-20
  • 35 Mahmood A, Lu D, Qu C, Goussev A, Chopp M. Human marrow stromal cell treatment provides long-lasting benefit after traumatic brain injury in rats. Neurosurgery 2005; 57 (05) 1026-1031 , discussion 1026–1031
  • 36 Piao H, Youn TJ, Kwon JS. et al. Effects of bone marrow derived mesenchymal stem cells transplantation in acutely infarcting myocardium. Eur J Heart Fail 2005; 7 (05) 730-738
  • 37 Perin EC, Dohmann HF, Borojevic R. et al. Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 2003; 107 (18) 2294-2302
  • 38 Jaquet K, Krause KT, Denschel J. et al. Reduction of myocardial scar size after implantation of mesenchymal stem cells in rats: what is the mechanism?. Stem Cells Dev 2005; 14 (03) 299-309
  • 39 Matsumoto R, Omura T, Yoshiyama M. et al. Vascular endothelial growth factor-expressing mesenchymal stem cell transplantation for the treatment of acute myocardial infarction. Arterioscler Thromb Vasc Biol 2005; 25 (06) 1168-1173
  • 40 de Lázaro I, Yilmazer A, Kostarelos K. Induced pluripotent stem (iPS) cells: a new source for cell-based therapeutics?. J Control Release 2014; 185: 37-44
  • 41 Yu J, Vodyanik MA, Smuga-Otto K. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007; 318 (5858) 1917-1920
  • 42 Lowry WE, Richter L, Yachechko R. et al. Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc Natl Acad Sci U S A 2008; 105 (08) 2883-2888
  • 43 Sommer CA, Stadtfeld M, Murphy GJ, Hochedlinger K, Kotton DN, Mostoslavsky G. Induced pluripotent stem cell generation using a single lentiviral stem cell cassette. Stem Cells 2009; 27 (03) 543-549
  • 44 O'Donoghue K, Fisk NM. Fetal stem cells. Best Pract Res Clin Obstet Gynaecol 2004; 18 (06) 853-875
  • 45 Westgren M, Ringdén O, Bartmann P. et al. Prenatal T-cell reconstitution after in utero transplantation with fetal liver cells in a patient with X-linked severe combined immunodeficiency. Am J Obstet Gynecol 2002; 187 (02) 475-482
  • 46 Rippon HJ, Bishop AE. Embryonic stem cells. Cell Prolif 2004; 37 (01) 23-34
  • 47 Xu C, Inokuma MS, Denham J. et al. Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol 2001; 19 (10) 971-974
  • 48 Bishop AE, Buttery LD, Polak JM. Embryonic stem cells. J Pathol 2002; 197 (04) 424-429
  • 49 Walker PR, Saas P, Dietrich P-Y. Role of Fas ligand (CD95L) in immune escape: the tumor cell strikes back. J Immunol 1997; 158 (10) 4521-4524
  • 50 Abe K, Niwa H, Iwase K. et al. Endoderm-specific gene expression in embryonic stem cells differentiated to embryoid bodies. Exp Cell Res 1996; 229 (01) 27-34
  • 51 Kørbling M, Estrov Z. Adult stem cells for tissue repair - a new therapeutic concept?. N Engl J Med 2003; 349 (06) 570-582
  • 52 Ferrari G, Cusella-De Angelis G, Coletta M. et al. Muscle regeneration by bone marrow-derived myogenic progenitors. Science 1998; 279 (5356) 1528-1530
  • 53 Petersen BE, Bowen WC, Patrene KD. et al. Bone marrow as a potential source of hepatic oval cells. Science 1999; 284 (5417) 1168-1170
  • 54 Eglitis MA, Mezey E. Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc Natl Acad Sci U S A 1997; 94 (08) 4080-4085
  • 55 Mezey E, Chandross KJ, Harta G, Maki RA, McKercher SR. Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 2000; 290 (5497) 1779-1782
  • 56 Wang X, Ge S, McNamara G, Hao Q-L, Crooks GM, Nolta JA. Albumin-expressing hepatocyte-like cells develop in the livers of immune-deficient mice that received transplants of highly purified human hematopoietic stem cells. Blood 2003; 101 (10) 4201-4208
  • 57 Jackson KA, Majka SM, Wang H. et al. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest 2001; 107 (11) 1395-1402
  • 58 Sata M, Saiura A, Kunisato A. et al. Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis. Nat Med 2002; 8 (04) 403-409
  • 59 Masuya M, Drake CJ, Fleming PA. et al. Hematopoietic origin of glomerular mesangial cells. Blood 2003; 101 (06) 2215-2218
  • 60 Wright DE, Wagers AJ, Gulati AP, Johnson FL, Weissman IL. Physiological migration of hematopoietic stem and progenitor cells. Science 2001; 294 (5548) 1933-1936
  • 61 Takahashi T, Kalka C, Masuda H. et al. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 1999; 5 (04) 434-438
  • 62 Seery JP. Stem cells of the oesophageal epithelium. J Cell Sci 2002; 115 (Pt 9): 1783-1789
  • 63 Okumura T, Shimada Y, Imamura M, Yasumoto S. Neurotrophin receptor p75(NTR) characterizes human esophageal keratinocyte stem cells in vitro. Oncogene 2003; 22 (26) 4017-4026
  • 64 Bjerknes M, Cheng H. Multipotential stem cells in adult mouse gastric epithelium. Am J Physiol Gastrointest Liver Physiol 2002; 283 (03) G767-G777
  • 65 Potten CS, Booth C, Tudor GL. et al. Identification of a putative intestinal stem cell and early lineage marker; musashi-1. Differentiation 2003; 71 (01) 28-41
  • 66 Alison MR, Islam S, Lim S. Stem cells in liver regeneration, fibrosis and cancer: the good, the bad and the ugly. J Pathol 2009; 217 (02) 282-298
  • 67 Kuwahara R, Kofman AV, Landis CS, Swenson ES, Barendswaard E, Theise ND. The hepatic stem cell niche: identification by label-retaining cell assay. Hepatology 2008; 47 (06) 1994-2002
  • 68 Xu X, D'Hoker J, Stangé G. et al. β cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell 2008; 132 (02) 197-207
  • 69 Dor Y, Brown J, Martinez OI, Melton DA. Adult pancreatic β-cells are formed by self-duplication rather than stem-cell differentiation. Nature 2004; 429 (6987) 41-46
  • 70 Zuk PA, Zhu M, Ashjian P. et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 2002; 13 (12) 4279-4295
  • 71 Tsuji W, Rubin JP, Marra KG. Adipose-derived stem cells: Implications in tissue regeneration. World J Stem Cells 2014; 6 (03) 312-321
  • 72 Miana VV, González EAP. Adipose tissue stem cells in regenerative medicine. Ecancermedicalscience 2018; 12: 822
  • 73 Mazini L, Ezzoubi M, Malka G. Overview of current adipose-derived stem cell (ADSCs) processing involved in therapeutic advancements: flow chart and regulation updates before and after COVID-19. Stem Cell Res Ther 2021; 12 (01) 1
  • 74 Gargett CE, Chan RW, Schwab KE. Hormone and growth factor signaling in endometrial renewal: role of stem/progenitor cells. Mol Cell Endocrinol 2008; 288 (1-2): 22-29
  • 75 Clarke RB, Anderson E, Howell A, Potten CS. Regulation of human breast epithelial stem cells. Cell Prolif 2003; 36 (Suppl 1, Suppl 1): 45-58
  • 76 Villadsen R, Fridriksdottir AJ, Rønnov-Jessen L. et al. Evidence for a stem cell hierarchy in the adult human breast. J Cell Biol 2007; 177 (01) 87-101
  • 77 Ehmcke J, Wistuba J, Schlatt S. Spermatogonial stem cells: questions, models and perspectives. Hum Reprod Update 2006; 12 (03) 275-282
  • 78 Shinohara T, Avarbock MR, Brinster RL. β1- and α6-integrin are surface markers on mouse spermatogonial stem cells. Proc Natl Acad Sci U S A 1999; 96 (10) 5504-5509
  • 79 Signoretti S, Loda M. Defining cell lineages in the prostate epithelium. Cell Cycle 2006; 5 (02) 138-141
  • 80 Leong KG, Wang B-E, Johnson L, Gao W-Q. Generation of a prostate from a single adult stem cell. Nature 2008; 456 (7223) 804-808
  • 81 Hudson DL. Epithelial stem cells in human prostate growth and disease. Prostate Cancer Prostatic Dis 2004; 7 (03) 188-194
  • 82 Dietrich J, Imitola J, Kesari S. Mechanisms of disease: the role of stem cells in the biology and treatment of gliomas. Nat Clin Pract Oncol 2008; 5 (07) 393-404
  • 83 Nishino J, Kim I, Chada K, Morrison SJ. Hmga2 promotes neural stem cell self-renewal in young but not old mice by reducing p16Ink4a and p19Arf Expression. Cell 2008; 135 (02) 227-239
  • 84 Sanai N, Tramontin AD, Quiñones-Hinojosa A. et al. Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 2004; 427 (6976) 740-744
  • 85 Boulton M, Albon J. Stem cells in the eye. Int J Biochem Cell Biol 2004; 36 (04) 643-657
  • 86 Coles BL, Horsford DJ, McInnes RR, van der Kooy D. Loss of retinal progenitor cells leads to an increase in the retinal stem cell population in vivo. Eur J Neurosci 2006; 23 (01) 75-82
  • 87 Ghazizadeh S, Taichman LB. Organization of stem cells and their progeny in human epidermis. J Invest Dermatol 2005; 124 (02) 367-372
  • 88 Tumbar T, Guasch G, Greco V. et al. Defining the epithelial stem cell niche in skin. Science 2004; 303 (5656) 359-363
  • 89 Morris RJ, Liu Y, Marles L. et al. Capturing and profiling adult hair follicle stem cells. Nat Biotechnol 2004; 22 (04) 411-417
  • 90 Ohyama M, Terunuma A, Tock CL. et al. Characterization and isolation of stem cell-enriched human hair follicle bulge cells. J Clin Invest 2006; 116 (01) 249-260
  • 91 Beltrami AP, Urbanek K, Kajstura J. et al. Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med 2001; 344 (23) 1750-1757
  • 92 Leri A, Kajstura J, Anversa P, Frishman WH. Myocardial regeneration and stem cell repair. Curr Probl Cardiol 2008; 33 (03) 91-153
  • 93 Hsieh PC, Segers VF, Davis ME. et al. Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nat Med 2007; 13 (08) 970-974
  • 94 Bearzi C, Rota M, Hosoda T. et al. Human cardiac stem cells. Proc Natl Acad Sci U S A 2007; 104 (35) 14068-14073
  • 95 Chen JC, Goldhamer DJ. Skeletal muscle stem cells. Reprod Biol Endocrinol 2003; 1: 101