RSS-Feed abonnieren
DOI: 10.1055/s-0044-1787062
Hepatotoxicity of Antibiotics and Antifungals and Their Safe Use in Hepatic Impairment
Funding None.
Abstract
Idiosyncratic drug-induced liver injury (DILI) is a rare and unpredictable form of hepatotoxicity. While its clinical course is usually benign, cases leading to liver transplantation or death can occur. Based on modern prospective registries, antimicrobials including antibiotics and antifungals are frequently implicated as common causes. Amoxicillin–clavulanate ranks as the most common cause for DILI in the Western World. Although the absolute risk of hepatotoxicity of these agents is low, as their usage is quite high, it is not uncommon for practitioners to encounter liver injury following the initiation of antibiotic or antifungal therapy. In this review article, mechanisms of hepatoxicity are presented. The adverse hepatic effects of well-established antibiotic and antifungal agents are described, including their frequency, severity, and pattern of injury and their HLA risks. We also review the drug labeling and prescription guidance from regulatory bodies, with a focus on individuals with hepatic impairment.
Authorship Statement
All authors participated in the conceptualization and preparation of the manuscript.
Article Guarantor
Naga Chalasani.
Publikationsverlauf
Artikel online veröffentlicht:
13. Mai 2024
© 2024. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Chalasani NP, Maddur H, Russo MW, Wong RJ, Reddy KR. Practice Parameters Committee of the American College of Gastroenterology. ACG Clinical Guideline: diagnosis and management of idiosyncratic drug-induced liver injury. Am J Gastroenterol 2021; 116 (05) 878-898
- 2 Vega M, Verma M, Beswick D. et al; Drug Induced Liver Injury Network (DILIN). The incidence of drug- and herbal and dietary supplement-induced liver injury: preliminary findings from gastroenterologist-based surveillance in the population of the state of Delaware. Drug Saf 2017; 40 (09) 783-787
- 3 Sgro C, Clinard F, Ouazir K. et al. Incidence of drug-induced hepatic injuries: a French population-based study. Hepatology 2002; 36 (02) 451-455
- 4 Björnsson ES, Bergmann OM, Björnsson HK, Kvaran RB, Olafsson S. Incidence, presentation, and outcomes in patients with drug-induced liver injury in the general population of Iceland. Gastroenterology 2013; 144 (07) 1419-1425 , 1425.e1–1425.e3, quiz e19–e20
- 5 Suk KT, Kim DJ, Kim CH. et al. A prospective nationwide study of drug-induced liver injury in Korea. Am J Gastroenterol 2012; 107 (09) 1380-1387
- 6 Andrade RJ, Chalasani N, Björnsson ES. et al. Drug-induced liver injury. Nat Rev Dis Primers 2019; 5 (01) 58
- 7 Rao A, Rule JA, Hameed B, Ganger D, Fontana RJ, Lee WM. Secular trends in severe idiosyncratic drug-induced liver injury in North America: an update from the Acute Liver Failure Study Group Registry. Am J Gastroenterol 2022; 117 (04) 617-626
- 8 Chalasani N, Bonkovsky HL, Fontana R. et al; United States Drug Induced Liver Injury Network. Features and outcomes of 899 patients with drug-induced liver injury: the DILIN prospective study. Gastroenterology 2015; 148 (07) 1340-52.e7
- 9 Björnsson ES, Stephens C, Atallah E. et al; The Prospective European DILI Registry. A new framework for advancing in drug-induced liver injury research. Liver Int 2023; 43 (01) 115-126
- 10 Stephens C, Robles-Diaz M, Medina-Caliz I. et al; Participating Clinical Centres. Comprehensive analysis and insights gained from long-term experience of the Spanish DILI Registry. J Hepatol 2021; 75 (01) 86-97
- 11 Bessone F, Hernandez N, Mendizabal M. et al. When the creation of a consortium provides useful answers: experience of the Latin American DILI Network (LATINDILIN). Clin Liver Dis (Hoboken) 2019; 13 (02) 51-57
- 12 Devarbhavi H, Joseph T, Sunil Kumar N. et al. The Indian Network of Drug-Induced Liver Injury: etiology, clinical features, outcome and prognostic markers in 1288 patients. J Clin Exp Hepatol 2021; 11 (03) 288-298
- 13 CDC. Outpatient antibiotic prescriptions - United States. Accessed April 27, 2024 at: https://www.cdc.gov/antibiotic-use/pdfs/Annual-Report-2021-H.pdf
- 14 Pathadka S, Yan VKC, Neoh CF. et al. Global consumption trend of antifungal agents in humans from 2008 to 2018: data from 65 middle- and high-income countries. Drugs 2022; 82 (11) 1193-1205
- 15 Saukkonen JJ, Cohn DL, Jasmer RM. et al; ATS (American Thoracic Society) Hepatotoxicity of Antituberculosis Therapy Subcommittee. An official ATS statement: hepatotoxicity of antituberculosis therapy. Am J Respir Crit Care Med 2006; 174 (08) 935-952
- 16 Ramappa V, Aithal GP. Hepatotoxicity related to anti-tuberculosis drugs: mechanisms and management. J Clin Exp Hepatol 2013; 3 (01) 37-49
- 17 Cerrone M, Bracchi M, Wasserman S. et al. Safety implications of combined antiretroviral and anti-tuberculosis drugs. Expert Opin Drug Saf 2020; 19 (01) 23-41
- 18 Otto AO, Rivera CG, Zeuli JD, Temesgen Z. Hepatotoxicity of contemporary antiretroviral drugs: a review and evaluation of published clinical data. Cells 2021; 10 (05) 1263
- 19 Björnsson ES, Hoofnagle JH. Categorization of drugs implicated in causing liver injury: critical assessment based on published case reports. Hepatology 2016; 63 (02) 590-603
- 20 Cirulli ET, Nicoletti P, Abramson K. et al; Drug-Induced Liver Injury Network (DILIN) Investigators, International DILI Consortium (iDILIC). A missense variant in PTPN22 is a risk factor for drug-induced liver injury. Gastroenterology 2019; 156 (06) 1707-1716.e2
- 21 Nicoletti P, Dellinger A, Li YJ. et al; Drug-Induced Liver Injury Network (DILIN), International Drug-Induced Liver Injury Consortium (iDILIC), Prospective European Drug-Induced Liver Injury (Pro-Euro DILI) Investigators. Identification of reduced ERAP2 expression and a novel HLA allele as components of a risk score for susceptibility to liver injury due to amoxicillin-clavulanate. Gastroenterology 2023; 164 (03) 454-466
- 22 Santini A, Ronchi D, Garbellini M, Piga D, Protti A. Linezolid-induced lactic acidosis: the thin line between bacterial and mitochondrial ribosomes. Expert Opin Drug Saf 2017; 16 (07) 833-843
- 23 Rodriguez RJ, Acosta Jr D. Inhibition of mitochondrial function in isolated rate liver mitochondria by azole antifungals. J Biochem Toxicol 1996; 11 (03) 127-131
- 24 Haegler P, Joerin L, Krähenbühl S, Bouitbir J. Hepatocellular toxicity of imidazole and triazole antimycotic agents. Toxicol Sci 2017; 157 (01) 183-195
- 25 Lammert C, Einarsson S, Saha C, Niklasson A, Bjornsson E, Chalasani N. Relationship between daily dose of oral medications and idiosyncratic drug-induced liver injury: search for signals. Hepatology 2008; 47 (06) 2003-2009
- 26 Lammert C, Bjornsson E, Niklasson A, Chalasani N. Oral medications with significant hepatic metabolism at higher risk for hepatic adverse events. Hepatology 2010; 51 (02) 615-620
- 27 de Abajo FJ, Montero D, Madurga M, García Rodríguez LA. Acute and clinically relevant drug-induced liver injury: a population based case-control study. Br J Clin Pharmacol 2004; 58 (01) 71-80
- 28 O'Donohue J, Oien KA, Donaldson P. et al. Co-amoxiclav jaundice: clinical and histological features and HLA class II association. Gut 2000; 47 (05) 717-720
- 29 Hussaini SH, O'Brien CS, Despott EJ, Dalton HR. Antibiotic therapy: a major cause of drug-induced jaundice in southwest England. Eur J Gastroenterol Hepatol 2007; 19 (01) 15-20
- 30 García Rodríguez LA, Stricker BH, Zimmerman HJ. Risk of acute liver injury associated with the combination of amoxicillin and clavulanic acid. Arch Intern Med 1996; 156 (12) 1327-1332
- 31 Salvo F, Polimeni G, Moretti U. et al. Adverse drug reactions related to amoxicillin alone and in association with clavulanic acid: data from spontaneous reporting in Italy. J Antimicrob Chemother 2007; 60 (01) 121-126
- 32 Larrey D, Vial T, Micaleff A. et al. Hepatitis associated with amoxycillin-clavulanic acid combination report of 15 cases. Gut 1992; 33 (03) 368-371
- 33 deLemos AS, Ghabril M, Rockey DC. et al; Drug-Induced Liver Injury Network (DILIN). Amoxicillin-clavulanate-induced liver injury. Dig Dis Sci 2016; 61 (08) 2406-2416
- 34 Lucena MI, Andrade RJ, Fernández MC. et al; Spanish Group for the Study of Drug-Induced Liver Disease (Grupo de Estudio para las Hepatopatías Asociadas a Medicamentos (GEHAM)). Determinants of the clinical expression of amoxicillin-clavulanate hepatotoxicity: a prospective series from Spain. Hepatology 2006; 44 (04) 850-856
- 35 Moseley RH. Hepatotoxicity of antimicrobials and antifungal agents. In: Kaplowitz N, DeLeve LD. eds. Drug-Induced Liver Disease, 3rd ed. Academic Press;; 2013: 463-481
- 36 LiverTox. Amoxicillin-Clavulanate. Accessed May 1, 2023 at: https://www.ncbi.nlm.nih.gov/books/NBK548517/
- 37 Bonkovsky HL, Kleiner DE, Gu J. et al; U.S. Drug Induced Liver Injury Network Investigators. Clinical presentations and outcomes of bile duct loss caused by drugs and herbal and dietary supplements. Hepatology 2017; 65 (04) 1267-1277
- 38 Aggarwal A, Jaswal N, Jain R, Elsiesy H. Amoxicillin-clavulanate-induced granulomatous hepatitis: case report and review of the literature. J Clin Transl Hepatol 2019; 7 (03) 280-283
- 39 Stine JG, Chalasani N. Chronic liver injury induced by drugs: a systematic review. Liver Int 2015; 35 (11) 2343-2353
- 40 Hautekeete ML, Horsmans Y, Van Waeyenberge C. et al. HLA association of amoxicillin-clavulanate–induced hepatitis. Gastroenterology 1999; 117 (05) 1181-1186
- 41 Donaldson PT, Daly AK, Henderson J. et al. Human leucocyte antigen class II genotype in susceptibility and resistance to co-amoxiclav-induced liver injury. J Hepatol 2010; 53 (06) 1049-1053
- 42 Lucena MI, Molokhia M, Shen Y. et al; Spanish DILI Registry, EUDRAGENE, DILIN, DILIGEN, International SAEC. Susceptibility to amoxicillin-clavulanate-induced liver injury is influenced by multiple HLA class I and II alleles. Gastroenterology 2011; 141 (01) 338-347
- 43 Augmentin (EMA). Accessed May 2, 2023 at: https://www.ema.europa.eu/en/documents/referral/augmentin-article-30-annex-ii_en.pdf
- 44 Augmentin (Accessed FDA). Accessed May 2, 2023 at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/050564Orig1s059,050575Orig1s048,050597Orig1s051,050720Orig1s033,050725Orig1s035,050726Orig1s026lbl.pdf
- 45 Zoratti C, Moretti R, Rebuzzi L. et al. Antibiotics and liver cirrhosis: what the physicians need to know. Antibiotics (Basel) 2021; 11 (01) 31
- 46 Benesic A, Rotter I, Dragoi D. et al. Development and validation of a test to identify drugs that cause idiosyncratic drug-induced liver injury. Clin Gastroenterol Hepatol 2018; 16 (09) 1488-1494.e5
- 47 Björnsson E, Olsson R. Outcome and prognostic markers in severe drug-induced liver disease. Hepatology 2005; 42 (02) 481-489
- 48 Nash E, Sabih AH, Chetwood J. et al. Drug-induced liver injury in Australia, 2009-2020: the increasing proportion of non-paracetamol cases linked with herbal and dietary supplements. Med J Aust 2021; 215 (06) 261-268
- 49 Olsson R, Wiholm BE, Sand C, Zettergren L, Hultcrantz R, Myrhed M. Liver damage from flucloxacillin, cloxacillin and dicloxacillin. J Hepatol 1992; 15 (1-2): 154-161
- 50 Devereaux BM, Crawford DH, Purcell P, Powell LW, Roeser HP. Flucloxacillin associated cholestatic hepatitis. An Australian and Swedish epidemic?. Eur J Clin Pharmacol 1995; 49 (1-2): 81-85
- 51 Wing K, Bhaskaran K, Pealing L. et al. Quantification of the risk of liver injury associated with flucloxacillin: a UK population-based cohort study. J Antimicrob Chemother 2017; 72 (09) 2636-2646
- 52 Russmann S, Kaye JA, Jick SS, Jick H. Risk of cholestatic liver disease associated with flucloxacillin and flucloxacillin prescribing habits in the UK: cohort study using data from the UK General Practice Research Database. Br J Clin Pharmacol 2005; 60 (01) 76-82
- 53 Flopen (TGA). Accessed May 3, 2023 at: https://www.ebs.tga.gov.au/ebs/picmi/picmirepository.nsf/pdf?OpenAgent&id=CP-2010-PI-02421-3
- 54 Flucloxacillin (Accessed EMC). Accessed May 3, 2023 at: https://www.medicines.org.uk/emc/product/546/smpc
- 55 Eckstein RP, Dowsett JF, Lunzer MR. Flucloxacillin induced liver disease: histopathological findings at biopsy and autopsy. Pathology 1993; 25 (03) 223-228
- 56 Björnsson E, Jerlstad P, Bergqvist A, Olsson R. Fulminant drug-induced hepatic failure leading to death or liver transplantation in Sweden. Scand J Gastroenterol 2005; 40 (09) 1095-1101
- 57 Fairley CK, McNeil JJ, Desmond P. et al. Risk factors for development of flucloxacillin associated jaundice. BMJ 1993; 306 (6872) 233-235
- 58 Daly AK, Donaldson PT, Bhatnagar P. et al; DILIGEN Study, International SAE Consortium. HLA-B*5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin. Nat Genet 2009; 41 (07) 816-819
- 59 Nicoletti P, Aithal GP, Chamberlain TC. et al; International Drug-Induced Liver Injury Consortium (iDILIC). Drug-induced liver injury due to flucloxacillin: relevance of multiple human leukocyte antigen alleles. Clin Pharmacol Ther 2019; 106 (01) 245-253
- 60 Dolk FCK, Pouwels KB, Smith DRM, Robotham JV, Smieszek T. Antibiotics in primary care in England: which antibiotics are prescribed and for which conditions?. J Antimicrob Chemother 2018; 73 (Suppl. 02) ii2-ii10
- 61 ACSQHC. AURA 2021 Fourth Australian report on antimicrobial use and resistance in human health. Accessed May 4, 2023 at: https://www.safetyandquality.gov.au/sites/default/files/2021-09/aura_2021_-_report_-_final_accessible_pdf_-_for_web_publication.pdf
- 62 Magill SS, O'Leary E, Ray SM. et al; Emerging Infections Program Hospital Prevalence Survey Team. Antimicrobial use in US hospitals: comparison of results from emerging infections program prevalence surveys, 2015 and 2011. Clin Infect Dis 2021; 72 (10) 1784-1792
- 63 Park JH, Hong S, Jun DW. et al. Prevalence and clinical characteristics of antibiotics associated drug induced liver injury. Ann Transl Med 2021; 9 (08) 642
- 64 Kang Y, Kim SH, Park SY. et al. Evaluation of drug-induced liver injury developed during hospitalization using electronic health record (EHR)-based algorithm. Allergy Asthma Immunol Res 2020; 12 (03) 430-442
- 65 Pedraza L, Laosa O, Rodríguez-Mañas L. et al. Drug induced liver injury in geriatric patients detected by a two-hospital prospective pharmacovigilance program: a comprehensive analysis using the Roussel Uclaf Causality Assessment Method. Front Pharmacol 2021; 11: 600255
- 66 LiverTox. Piperacillin-Tazobactam. Accessed May 5, 2023 at: https://www.ncbi.nlm.nih.gov/books/NBK548825/
- 67 He ZF, Wu XA, Wang YP. Severe bone marrow suppression and hepatic dysfunction caused by piperacillin/tazobactam. Scand J Infect Dis 2013; 45 (11) 885-887
- 68 Lv J, Wu G, Zhang F, Su X. An unusual case of piperacillin-tazobactam-induced fever, eosinophilia, thrombocytopenia and liver damage. Eur J Hosp Pharm Sci Pract 2022; 29 (e1): e91-e94
- 69 Patel J, Walayat S, Kalva N, Palmer-Hill S, Dhillon S. Bile cast nephropathy: a case report and review of the literature. World J Gastroenterol 2016; 22 (27) 6328-6334
- 70 Cabañas R, Calderon O, Ramirez E. et al. Piperacillin-induced DRESS: distinguishing features observed in a clinical and allergy study of 8 patients. J Investig Allergol Clin Immunol 2014; 24 (06) 425-430
- 71 Zosyn (FDA). Accessed May 5, 2023 at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/050684s101lbl.pdf
- 72 Tazocin (EMA). Accessed May 5, 2023 at: https://www.ema.europa.eu/en/documents/referral/tazocin-article-30-referral-assessment-report_en.pdf
- 73 McDonald C, Cotta MO, Little PJ. et al. Is high-dose β-lactam therapy associated with excessive drug toxicity in critically ill patients?. Minerva Anestesiol 2016; 82 (09) 957-965
- 74 Biggins SW, Angeli P, Garcia-Tsao G. et al. Diagnosis, evaluation, and management of ascites, spontaneous bacterial peritonitis and hepatorenal syndrome: 2021 Practice Guidance by the American Association for the Study of Liver Diseases. Hepatology 2021; 74 (02) 1014-1048
- 75 LiverTox. Ceftriaxone. Accessed May 8, 2023 at: https://www.ncbi.nlm.nih.gov/books/NBK548258/
- 76 Asif M, Khan WJ, Aslam S, Nadeem I, Singal AK. Ceftriaxone-associated severe acute hepatitis. Cureus 2023; 15 (03) e36341
- 77 Guarino M, Perna B, Pastorelli A. et al. A case of ceftriaxone-induced liver injury and literature review. Infez Med 2022; 30 (02) 293-297
- 78 Nakaharai K, Sakamoto Y, Yaita K, Yoshimura Y, Igarashi S, Tachikawa N. Drug-induced liver injury associated with high-dose ceftriaxone: a retrospective cohort study adjusted for the propensity score. Eur J Clin Pharmacol 2016; 72 (08) 1003-1011
- 79 Park HZ, Lee SP, Schy AL. Ceftriaxone-associated gallbladder sludge. Identification of calcium-ceftriaxone salt as a major component of gallbladder precipitate. Gastroenterology 1991; 100 (06) 1665-1670
- 80 Pigrau C, Pahissa A, Gropper S, Sureda D, Martinez Vazquez JM. Ceftriaxone-associated biliary pseudolithiasis in adults. Lancet 1989; 2 (8655) 165
- 81 Heim-Duthoy KL, Caperton EM, Pollock R, Matzke GR, Enthoven D, Peterson PK. Apparent biliary pseudolithiasis during ceftriaxone therapy. Antimicrob Agents Chemother 1990; 34 (06) 1146-1149
- 82 Rocephin (FDA). Accessed May 8, 2023 at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/050585s068lbl.pdf
- 83 Rocephin (EMA). Accessed May 8, 2023 at: https://www.ema.europa.eu/en/documents/referral/rocephin-article-30-referral-assessment-report_en.pdf
- 84 Alqahtani SA, Kleiner DE, Ghabril M, Gu J, Hoofnagle JH, Rockey DC. Drug-Induced Liver Injury Network (DILIN) Study Investigators. Identification and characterization of cefazolin-induced liver injury. Clin Gastroenterol Hepatol 2015; 13 (07) 1328-1336.e2
- 85 Gekhman D, Correa E. One dose of cefazolin—months of misery: a case of acute liver failure with grave. Am J Gastroenterol 2018; 113: 1664-1665
- 86 Ohashi K, Tsunoo M, Tsuneoka K. Pharmacokinetics and protein binding of cefazolin and cephalothin in patients with cirrhosis. J Antimicrob Chemother 1986; 17 (03) 347-351
- 87 Ancef (FDA). . Accessed May 10, 2023 at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2004/50461slr139_ancef_lbl.pdf
- 88 Chung AH, Watson K. Cefazolin-induced hypoprothrombinemia. Am J Health Syst Pharm 2008; 65 (09) 823-826
- 89 Barnes T, Yan S, Kaakeh Y. Necrotizing esophagitis and bleeding associated with cefazolin. Ann Pharmacother 2014; 48 (09) 1214-1218
- 90 Smith M, Doyle J, Crane C, Bussell C. Cefazolin-induced hypoprothrombinemia. Proc Bayl Univ Med Cent 2022; 35 (06) 868-870
- 91 Derby LE, Jick H, Henry DA, Dean AD. Erythromycin-associated cholestatic hepatitis. Med J Aust 1993; 158 (09) 600-602
- 92 Carson JL, Strom BL, Duff A. et al. Acute liver disease associated with erythromycins, sulfonamides, and tetracyclines. Ann Intern Med 1993; 119 (7, Pt 1): 576-583
- 93 Johnson Jr DF, Hall WH. Allergic hepatitis caused by propionyl erythromycin ester of lauryl sulfate. N Engl J Med 1961; 265: 1200-1202
- 94 Avila P, Capellà D, Laporte JR, Moreno V. Which salt of erythromycin is most hepatotoxic?. Lancet 1988; 1 (8594) 1104
- 95 LiverTox. Erythromycin. Accessed May 10, 2023 at: https://www.ncbi.nlm.nih.gov/books/NBK547881/
- 96 Leitner JM, Graninger W, Thalhammer F. Hepatotoxicity of antibacterials: pathomechanisms and clinical. Infection 2010; 38 (01) 3-11
- 97 Erythromycin (FDA). Accessed May 10, 2023 at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/050536s026lbl.pdf
- 98 Erythrocin (EMC). Accessed May 10, 2023 at: https://www.medicines.org.uk/emc/product/403/smpc
- 99 LiverTox. Clarithromycin. Accessed May 11, 2023 at: https://www.ncbi.nlm.nih.gov/books/NBK547886/
- 100 Brown BA, Wallace Jr RJ, Griffith DE, Girard W. Clarithromycin-induced hepatotoxicity. Clin Infect Dis 1995; 20 (04) 1073-1074
- 101 Edhi AI, Hakim S, Shams C, Bedi D, Amin M, Cappell MS. Clarithromycin-associated acute liver failure leading to fatal, massive upper gastrointestinal hemorrhage from profound coagulopathy: case report and systematic literature review. Case Reports Hepatol 2020; 2020: 2135239
- 102 Maggi P, Solarino B, Cassano P. et al. Fatal fulminant hepatitis following administration of clarithromycin in a patient chronically treated with antipsychotic drugs. Immunopharmacol Immunotoxicol 2013; 35 (01) 191-194
- 103 Christopher K, Hyatt PA, Horkan C, Yodice PC. Clarithromycin use preceding fulminant hepatic failure. Am J Gastroenterol 2002; 97 (02) 489-490
- 104 Biaxin (FDA). Accessed May 11, 2023 at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/050662s042,050698s024,050775s013lbl.pdf
- 105 Naseralallah LM, Aboujabal BA, Geryo NM. et al. The determination of causality of drug induced liver injury in patients with COVID-19 clinical syndrome. PLoS One 2022; 17 (09) e0268705
- 106 Sigurdarson J, Eythorsson E, Bjarnason A, Bjornsson ES. Liver injury in patients with COVID-19 in comparison to patients with the pandemic influenza A (H1N1) 2009: a population-based study. Scand J Gastroenterol 2023; 58 (10) 1145-1152
- 107 LiverTox. Azithromycin. Accessed May 12, 2023 at: https://www.ncbi.nlm.nih.gov/books/NBK548434/
- 108 Martinez MA, Vuppalanchi R, Fontana RJ. et al. Clinical and histologic features of azithromycin-induced liver injury. Clin Gastroenterol Hepatol 2015; 13 (02) 369-376.e3
- 109 Park HJ, Seo KI, Choi YI. Liver transplantation for azithromycin-induced severe liver injury. Korean J Transplant 2020; 34 (04) 279-285
- 110 Zithromax (FDA). Accessed May 12, 2023 at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/050670s036,050710s051,050711s050,050784s037lbl.pdf
- 111 Yang HY, Guo DH, Jia WP, Zhu M, Xu YJ, Wang XY. Incidence, clinical features, and risk factors of fluoroquinolone-induced acute liver injury: a case-control study. Ther Clin Risk Manag 2019; 15: 389-395
- 112 Nibell O, Svanström H, Inghammar M. Oral fluoroquinolone use and the risk of acute liver injury: a nationwide cohort study. Clin Infect Dis 2022; 74 (12) 2152-2158
- 113 Paterson JM, Mamdani MM, Manno M, Juurlink DN. Canadian Drug Safety and Effectiveness Research Network. Fluoroquinolone therapy and idiosyncratic acute liver injury: a population-based study. CMAJ 2012; 184 (14) 1565-1570
- 114 Kaye JA, Castellsague J, Bui CL. et al. Risk of acute liver injury associated with the use of moxifloxacin and other oral antimicrobials: a retrospective, population-based cohort study. Pharmacotherapy 2014; 34 (04) 336-349
- 115 Alshammari TM, Larrat EP, Morrill HJ, Caffrey AR, Quilliam BJ, LaPlante KL. Risk of hepatotoxicity associated with fluoroquinolones: a national case-control safety study. Am J Health Syst Pharm 2014; 71 (01) 37-43
- 116 Daly AK. Genetics of drug-induced liver injury: current knowledge and future prospects. Clin Transl Sci 2023; 16 (01) 37-42
- 117 LiverTox. Fluoroquinolones. Accessed May 12, 2023 at: https://www.ncbi.nlm.nih.gov/books/NBK547840/
- 118 Orman ES, Conjeevaram HS, Vuppalanchi R. et al; DILIN Research Group. Clinical and histopathologic features of fluoroquinolone-induced liver injury. Clin Gastroenterol Hepatol 2011; 9 (06) 517-523.e3
- 119 LiverTox. Ciprofloxacin. Accessed May 12, 2023 at: https://www.ncbi.nlm.nih.gov/books/NBK548066/
- 120 LiverTox. Levofloxacin. Accessed May 12, 2023 at: https://www.ncbi.nlm.nih.gov/books/NBK548357/
- 121 LiverTox. Moxifloxacin. Accessed May 12, 2023 at: https://www.ncbi.nlm.nih.gov/books/NBK548166/
- 122 Fuchs S, Simon Z, Brezis M. Fatal hepatic failure associated with ciprofloxacin. Lancet 1994; 343 (8899) 738-739
- 123 Spahr L, Rubbia-Brandt L, Marinescu O, Armenian B, Hadengue A. Acute fatal hepatitis related to levofloxacin. J Hepatol 2001; 35 (02) 308-309
- 124 Verma R, Dhamija R, Batts DH, Ross SC, Loehrke ME. Moxifloxacin induced fatal hepatotoxicity in a 72-year-old man: a case report. Cases J 2009; 2: 8063
- 125 Bataille L, Rahier J, Geubel A. Delayed and prolonged cholestatic hepatitis with ductopenia after long-term ciprofloxacin therapy for Crohn's disease. J Hepatol 2002; 37 (05) 696-699
- 126 Levine C, Trivedi A, Thung SN, Perumalswami PV. Severe ductopenia and cholestasis from levofloxacin drug-induced liver injury: a case report and review. Semin Liver Dis 2014; 34 (02) 246-251
- 127 Robinson W, Habr F, Manlolo J, Bhattacharya B. Moxifloxacin associated vanishing bile duct syndrome. J Clin Gastroenterol 2010; 44 (01) 72-73
- 128 Cipro (FDA). Accessed May 12, 2023 at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/019537s092lbl.pdf
- 129 Levaquin (FDA). Accessed May 12, 2023 at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/020634s073lbl.pdf
- 130 Avelox (FDA). Accessed May 12, 2023 at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/021277Orig1s062,021085Orig1s066lbl.pdf
- 131 Ciprofloxacin (EMA). Accessed May 12, 2023 at: https://www.ema.europa.eu/en/documents/referral/ciprofloxacin-bayer-article-30-referral-annex-i-ii-iii_en.pdf
- 132 Tavanic (EMA). Accessed May 12, 2023 at: https://www.ema.europa.eu/en/documents/referral/tavanic-article-30-referral-annex-iii-tablets_en.pdf
- 133 Avelox (EMA). Accessed May 12, 2023 at: https://www.ema.europa.eu/en/documents/referral/avelox-article-6-12-referral-annex-i-ii-iii_en.pdf
- 134 LiverTox. Doxycycline. Accessed May 15, 2023 at: https://www.ncbi.nlm.nih.gov/books/NBK548353/
- 135 Heaton PC, Fenwick SR, Brewer DE. Association between tetracycline or doxycycline and hepatotoxicity: a population based case-control study. J Clin Pharm Ther 2007; 32 (05) 483-487
- 136 Björnsson E, Lindberg J, Olsson R. Liver reactions to oral low-dose tetracyclines. Scand J Gastroenterol 1997; 32 (04) 390-395
- 137 Varma S, Nathanson J, Dowlatshahi M, Del Portillo A, Ramirez I, Garcia-Carrasquillo R. Doxycycline-induced cholestatic liver injury. Clin J Gastroenterol 2021; 14 (05) 1503-1510
- 138 Hunt CM, Washington K. Tetracycline-induced bile duct paucity and prolonged cholestasis. Gastroenterology 1994; 107 (06) 1844-1847
- 139 Vibramycin (FDA). Accessed May 15, 2023 at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/050006s092,050007s034,050480s058,050533s047lbl.pdf
- 140 Seaman HE, Lawrenson RA, Williams TJ, MacRae KD, Farmer RD. The risk of liver damage associated with minocycline: a comparative study. J Clin Pharmacol 2001; 41 (08) 852-860
- 141 Urban TJ, Nicoletti P, Chalasani N. et al; Drug-Induced Liver Injury Network (DILIN), Pharmacogenetics of Drug-Induced Liver Injury group (DILIGEN), International Serious Adverse Events Consortium (iSAEC). Minocycline hepatotoxicity: Clinical characterization and identification of HLA-B∗35:02 as a risk factor. J Hepatol 2017; 67 (01) 137-144
- 142 Björnsson E, Talwalkar J, Treeprasertsuk S. et al. Drug-induced autoimmune hepatitis: clinical characteristics and prognosis. Hepatology 2010; 51 (06) 2040-2048
- 143 LiverTox. Minocycline. Accessed May 15, 2023 at: https://www.ncbi.nlm.nih.gov/books/NBK547956/
- 144 Andrade RJ, Aithal GP, de Boer YS. et al; IAIHG and EASL DHILI Consortium. Nomenclature, diagnosis and management of drug-induced autoimmune-like hepatitis (DI-ALH): an expert opinion meeting report. J Hepatol 2023; 79 (03) 853-866
- 145 Acharya S, Thakurathi P, Plocharczyk E, Arbach A, Gupta SS. Minocycline-Associated Fatal Liver Injury. Am J Ther 2022; DOI: 10.1097/mjt.0000000000001585.
- 146 Pohle T, Menzel J, Domschke W. Minocycline and fulminant hepatic failure necessitating liver transplantation. Am J Gastroenterol 2000; 95 (02) 560-561
- 147 Minocin (FDA). Accessed May 15, 2023 at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/050649s027lbl.pdf
- 148 Dujovne CA, Chan CH, Zimmerman HJ. Sulfonamide hepatic injury. Review of the literature and report of a case due to sulfamethoxazole. N Engl J Med 1967; 277 (15) 785-788
- 149 Jick H, Derby LE. A large population-based follow-up study of trimethoprim-sulfamethoxazole, trimethoprim, and cephalexin for uncommon serious drug toxicity. Pharmacotherapy 1995; 15 (04) 428-432
- 150 Døssing M, Andreasen PB. Drug-induced liver disease in Denmark. An analysis of 572 cases of hepatotoxicity reported to the Danish Board of Adverse Reactions to Drugs. Scand J Gastroenterol 1982; 17 (02) 205-211
- 151 Sembera S, Lammert C, Talwalkar JA. et al. Frequency, clinical presentation, and outcomes of drug-induced liver injury after liver transplantation. Liver Transpl 2012; 18 (07) 803-810
- 152 LiverTox. Sulfamethoxazole-Trimethoprim. Accessed May 16, 2023 at: https://www.ncbi.nlm.nih.gov/books/NBK547937/
- 153 Fontana RJ, Kleiner DE, Chalasani N. et al. The impact of patient age and corticosteroids in patients with sulfonamide hepatotoxicity. Am J Gastroenterol 2023; 118 (09) 1566-1575
- 154 Kathi PR, Tama M, Ehrinpreis M. et al. Vanishing bile duct syndrome arising in a patient with HIV infection sequentially treated with trimethoprim/sulfamethoxazole and dapsone. Clin J Gastroenterol 2020; 13 (02) 276-280
- 155 Gordin FM, Simon GL, Wofsy CB, Mills J. Adverse reactions to trimethoprim-sulfamethoxazole in patients with the acquired immunodeficiency syndrome. Ann Intern Med 1984; 100 (04) 495-499
- 156 Chalasani N, Reddy KRK, Fontana RJ. et al. Idiosyncratic drug induced liver injury in African-Americans is associated with greater morbidity and mortality compared to Caucasians. Am J Gastroenterol 2017; 112 (09) 1382-1388
- 157 Li YJ, Phillips EJ, Dellinger A. et al; Drug-Induced Liver Injury Network. Human leukocyte antigen B*14:01 and B*35:01 are associated with trimethoprim-sulfamethoxazole induced liver injury. Hepatology 2021; 73 (01) 268-281
- 158 Thies PW, Dull WL. Trimethoprim-sulfamethoxazole-induced cholestatic hepatitis. Inadvertent rechallenge. Arch Intern Med 1984; 144 (08) 1691-1692
- 159 Ransohoff DF, Jacobs G. Terminal hepatic failure following a small dose of sulfamethoxazole-trimethoprim. Gastroenterology 1981; 80 (04) 816-819
- 160 LiverTox. Bactrim. Accessed May 16, 2023 at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/017377s083lbl.pdf
- 161 Singh N, Gayowski T, Yu VL, Wagener MM. Trimethoprim-sulfamethoxazole for the prevention of spontaneous bacterial peritonitis in cirrhosis: a randomized trial. Ann Intern Med 1995; 122 (08) 595-598
- 162 Alvarez RF, Mattos AA, Corrêa EB, Cotrim HP, Nascimento TV. Trimethoprim-sulfamethoxazole versus norfloxacin in the prophylaxis of spontaneous bacterial peritonitis in cirrhosis. Arq Gastroenterol 2005; 42 (04) 256-262
- 163 Lontos S, Shelton E, Angus PW. et al. A randomized controlled study of trimethoprim-sulfamethoxazole versus norfloxacin for the prevention of infection in cirrhotic patients. J Dig Dis 2014; 15 (05) 260-267
- 164 Chalasani N, Li YJ, Dellinger A. et al; Drug Induced Liver Injury Network. Clinical features, outcomes, and HLA risk factors associated with nitrofurantoin-induced liver injury. J Hepatol 2023; 78 (02) 293-300
- 165 Bessone F, Ferrari A, Hernandez N. et al. Nitrofurantoin-induced liver injury: long-term follow-up in two prospective DILI registries. Arch Toxicol 2023; 97 (02) 593-602
- 166 LiverTox. Nitrofurantoin. Accessed May 17, 2023 at: https://www.ncbi.nlm.nih.gov/books/NBK548318/
- 167 Daly AK, Bjornsson ES, Lucena MI, Andrade RJ, Aithal GP. Drug-induced liver injury due to nitrofurantoin: Similar clinical features, but different HLA risk alleles in an independent cohort. J Hepatol 2023; 78 (05) e165-e166
- 168 Macrobid (FDA). Accessed May 17, 2023 at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/020064Orig1s029lbl.pdf
- 169 Paiva LA, Wright PJ, Koff RS. Long-term hepatic memory for hypersensitivity to nitrofurantoin. Am J Gastroenterol 1992; 87 (07) 891-893
- 170 Chen Y, Yang XY, Zeckel M. et al. Risk of hepatic events in patients treated with vancomycin in clinical studies: a systematic review and meta-analysis. Drug Saf 2011; 34 (01) 73-82
- 171 Wolfson AR, Zhou L, Li Y, Phadke NA, Chow OA, Blumenthal KG. Drug reaction with eosinophilia and systemic symptoms (DRESS) syndrome identified in the electronic health record allergy module. J Allergy Clin Immunol Pract 2019; 7 (02) 633-640
- 172 Sharifzadeh S, Mohammadpour AH, Tavanaee A, Elyasi S. Antibacterial antibiotic-induced drug reaction with eosinophilia and systemic symptoms (DRESS) syndrome: a literature review. Eur J Clin Pharmacol 2021; 77 (03) 275-289
- 173 Song SM, Cho MS, Oh SH. et al. Liver transplantation in a child with acute liver failure resulting from drug rash with eosinophilia and systemic symptoms syndrome. Korean J Pediatr 2013; 56 (05) 224-226
- 174 Cadle RM, Mansouri MD, Darouiche RO. Vancomycin-induced elevation of liver enzyme levels. Ann Pharmacother 2006; 40 (06) 1186-1189
- 175 Asif BKC, Barnhart H, Chalasani NP. et al. Vancomycin induced liver injury, DRESS, and HLA-A*32:01. Hepatology 2021; 74 (S1): 740
- 176 Korman TM, Turnidge JD, Grayson ML. Risk factors for adverse cutaneous reactions associated with intravenous vancomycin. J Antimicrob Chemother 1997; 39 (03) 371-381
- 177 Konvinse KC, Trubiano JA, Pavlos R. et al. HLA-A*32:01 is strongly associated with vancomycin-induced drug reaction with eosinophilia and systemic symptoms. J Allergy Clin Immunol 2019; 144 (01) 183-192
- 178 Vancocin (FDA). Accessed May 18, 2023 at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/060180s049lbl.pdf
- 179 Harada H, Miyagawa S, Kawasaki S. et al. Study of the pharmacokinetics of vancomycin in patients with impaired liver function. J Infect Chemother 1999; 5 (02) 104-107
- 180 Brunetti L, Song JH, Suh D. et al. The risk of vancomycin toxicity in patients with liver impairment. Ann Clin Microbiol Antimicrob 2020; 19 (01) 13
- 181 Mishra R, Patel H, Goel B, Vakde T. A case of linezolid toxicity presenting as a sepsis mimic. Case Rep Crit Care 2019; 2019: 2157674
- 182 Shaikh A, McHugh J. Linezolid use and drug-induced liver injury. Proc Bayl Univ Med Cent 2020; 34 (02) 316-317
- 183 Tobias PE, Varughese CA, Hanson AP, Gurnani PK. A case of linezolid induced toxicity. J Pharm Pract 2020; 33 (02) 222-225
- 184 De Bus L, Depuydt P, Libbrecht L. et al. Severe drug-induced liver injury associated with prolonged use of linezolid. J Med Toxicol 2010; 6 (03) 322-326
- 185 Djibré M, Pham T, Denis M, Pras Landre V, Fartoukh M. Fatal lactic acidosis associated with linezolid therapy. Infection 2015; 43 (01) 125-126
- 186 Hsu SN, Shih MF, Yang CW, Wu CC, Chen CC. Severe linezolid-induced lactic acidosis in a cirrhosis patient. Nephrology (Carlton) 2015; 20 (01) 47-48
- 187 Cheng CN, Lin SW, Wu CC. Early linezolid-associated lactic acidosis in a patient with Child's class C liver cirrhosis and end stage renal disease. J Infect Chemother 2018; 24 (10) 841-844
- 188 De Vriese AS, Coster RV, Smet J. et al. Linezolid-induced inhibition of mitochondrial protein synthesis. Clin Infect Dis 2006; 42 (08) 1111-1117
- 189 Ikuta S, Tanimura K, Yasui C. et al. Chronic liver disease increases the risk of linezolid-related thrombocytopenia in methicillin-resistant Staphylococcus aureus-infected patients after digestive surgery. J Infect Chemother 2011; 17 (03) 388-391
- 190 Takahashi Y, Takesue Y, Nakajima K. et al. Risk factors associated with the development of thrombocytopenia in patients who received linezolid therapy. J Infect Chemother 2011; 17 (03) 382-387
- 191 Im JH, Baek JH, Kwon HY, Lee JS. Incidence and risk factors of linezolid-induced lactic acidosis. Int J Infect Dis 2015; 31: 47-52
- 192 LiverTox. Zyvox. Accessed May 19, 2023 at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/021130s043,021131s039,021132s042lbl.pdf
- 193 Luque S, Muñoz-Bermudez R, Echeverría-Esnal D. et al. Linezolid dosing in patients with liver cirrhosis: standard dosing risk toxicity. Ther Drug Monit 2019; 41 (06) 732-739
- 194 Kao WY, Su CW, Huang YS. et al. Risk of oral antifungal agent-induced liver injury in Taiwanese. Br J Clin Pharmacol 2014; 77 (01) 180-189
- 195 García Rodríguez LA, Duque A, Castellsague J, Pérez-Gutthann S, Stricker BH. A cohort study on the risk of acute liver injury among users of ketoconazole and other antifungal drugs. Br J Clin Pharmacol 1999; 48 (06) 847-852
- 196 Fontana RJ, Cirulli ET, Gu J. et al. The role of HLA-A*33:01 in patients with cholestatic hepatitis attributed to terbinafine. J Hepatol 2018; 69 (06) 1317-1325
- 197 Agarwal K, Manas DM, Hudson M. Terbinafine and fulminant hepatic failure. N Engl J Med 1999; 340 (16) 1292-1293
- 198 Perveze Z, Johnson MW, Rubin RA. et al. Terbinafine-induced hepatic failure requiring liver transplantation. Liver Transpl 2007; 13 (01) 162-164
- 199 Walter RB, Lukaschek J, Renner EL, Müllhaupt B, Bachli EB. Fatal hepatic veno-occlusive disease associated with terbinafine in a liver transplant recipient. J Hepatol 2003; 38 (03) 373-374
- 200 Mallat A, Zafrani ES, Metreau JM, Dhumeaux D. Terbinafine-induced prolonged cholestasis with reduction of interlobular bile ducts. Dig Dis Sci 1997; 42 (07) 1486-1488
- 201 Anania FA, Rabin L. Terbinafine hepatotoxicity resulting in chronic biliary ductopenia and portal fibrosis. Am J Med 2002; 112 (09) 741-742
- 202 Nicoletti P, Aithal GP, Bjornsson ES. et al; International Drug-Induced Liver Injury Consortium, Drug-Induced Liver Injury Network Investigators, and International Serious Adverse Events Consortium. Association of liver injury from specific drugs, or groups of drugs, with polymorphisms in HLA and other genes in a genome-wide association study. Gastroenterology 2017; 152 (05) 1078-1089
- 203 Lamisil (FDA). Accessed May 22, 2023 at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/020539s033lbl.pdf
- 204 Kramer ON, Albrecht J. Clinical presentation of terbinafine-induced severe liver injury and the value of laboratory monitoring: a critically appraised topic. Br J Dermatol 2017; 177 (05) 1279-1284
- 205 Lewis JH, Zimmerman HJ, Benson GD, Ishak KG. Hepatic injury associated with ketoconazole therapy. Analysis of 33 cases. Gastroenterology 1984; 86 (03) 503-513
- 206 Stricker BH, Blok AP, Bronkhorst FB, Van Parys GE, Desmet VJ. Ketoconazole-associated hepatic injury. A clinicopathological study of 55 cases. J Hepatol 1986; 3 (03) 399-406
- 207 Lake-Bakaar G, Scheuer PJ, Sherlock S. Hepatic reactions associated with ketoconazole in the United Kingdom. Br Med J (Clin Res Ed) 1987; 294 (6569) 419-422
- 208 LiverTox. Ketoconazole. Accessed May 23, 2023 at: https://www.ncbi.nlm.nih.gov/books/NBK547869/
- 209 Ma J, Ahmad J, Navarro V, Gu J, Ghabril M. Characteristics of liver injury due to azole antifungal drugs in the United States: results from the Drug Induced Liver Injury Network (DILIN) prospective study. Am J Gastroenterol 2022; 117 (10) 884-885
- 210 Kim TH, Kim BH, Kim YW. et al. Liver cirrhosis developed after ketoconazole-induced acute hepatic injury. J Gastroenterol Hepatol 2003; 18 (12) 1426-1429
- 211 EMA. European Medicines Agency recommends suspension of marketing authorisations for oral ketoconazole. Accessed May 23, 2023 at: https://www.ema.europa.eu/en/news/european-medicines-agency-recommends-suspension-marketing-authorisations-oral-ketoconazole#:~:text=The%20European%20Medicines%20Agency%20has,compared%20with%20other%20antifungal%20medicines
- 212 FDA. FDA Drug Safety Communication: FDA limits usage of Nizoral (ketoconazole) oral tablets due to potentially fatal liver injury and risk of drug interactions and adrenal gland problems. Accessed May 23, 2023 at: https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-fda-limits-usage-nizoral-ketoconazole-oral-tablets-due-potentially
- 213 Nizoral (FDA). Accessed May 23, 2023 at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/018533s041lbl.pdf
- 214 Heiberg JK, Svejgaard E. Toxic hepatitis during ketoconazole treatment. Br Med J (Clin Res Ed) 1981; 283 (6295) 825-826
- 215 Lin CL, Hu JT, Yang SS, Shin CY, Huang SH. Unexpected emergence of acute hepatic injury in patients treated repeatedly with ketoconazole. J Clin Gastroenterol 2008; 42 (04) 432-433
- 216 Bradbury BD, Jick SS. Itraconazole and fluconazole and certain rare, serious adverse events. Pharmacotherapy 2002; 22 (06) 697-700
- 217 LiverTox. Fluconazole. Accessed May 24, 2023 at: https://www.ncbi.nlm.nih.gov/books/NBK548300/
- 218 Su FW, Perumalswami P, Grammer LC. Acute hepatitis and rash to fluconazole. Allergy 2003; 58 (11) 1215-1216
- 219 Jacobson MA, Hanks DK, Ferrell LD. Fatal acute hepatic necrosis due to fluconazole. Am J Med 1994; 96 (02) 188-190
- 220 Fischer MA, Winkelmayer WC, Rubin RH, Avorn J. The hepatotoxicity of antifungal medications in bone marrow transplant recipients. Clin Infect Dis 2005; 41 (03) 301-307
- 221 Ruhnke M, Yeates RA, Pfaff G, Sarnow E, Hartmann A, Trautmann M. Single-dose pharmacokinetics of fluconazole in patients with liver cirrhosis. J Antimicrob Chemother 1995; 35 (05) 641-647
- 222 Diflucan (FDA). Accessed May 24, 2023 at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/019949s073,020090s054lbl.pdf
- 223 Diflucan (EMA). Accessed May 24, 2023 at: https://www.ema.europa.eu/en/documents/referral/diflucan-article-30-referral-annex-iii_en.pdf
- 224 Wells C, Lever AM. Dose-dependent fluconazole hepatotoxicity proven on biopsy and rechallenge. J Infect 1992; 24 (01) 111-112
- 225 Gayam V, Khalid M, Dahal S, Garlapati P, Gill A. Hyperacute liver injury following intravenous fluconazole: a rare case of dose-independent hepatotoxicity. J Family Med Prim Care 2018; 7 (02) 451-454
- 226 Hay RJ. Risk/benefit ratio of modern antifungal therapy: focus on hepatic reactions. J Am Acad Dermatol 1993; 29 (01) S50-S54
- 227 Lavrijsen AP, Balmus KJ, Nugteren-Huying WM, Roldaan AC, van't Wout JW, Stricker BH. Hepatic injury associated with itraconazole. Lancet 1992; 340 (8813) 251-252
- 228 Talwalkar JA, Soetikno RE, Carr-Locke DL, Berg CL. Severe cholestasis related to intraconazole for the treatment of onychomycosis. Am J Gastroenterol 1999; 94 (12) 3632-3633
- 229 Adriaenssens B, Roskams T, Steger P, Van Steenbergen W. Hepatotoxicity related to itraconazole: report of three cases. Acta Clin Belg 2001; 56 (06) 364-369
- 230 LiverTox. Itraconazole. May 24, 2023 at: https://www.ncbi.nlm.nih.gov/books/NBK548273/
- 231 Srebrnik A, Levtov S, Ben-Ami R, Brenner S. Liver failure and transplantation after itraconazole treatment for toenail onychomycosis. J Eur Acad Dermatol Venereol 2005; 19 (02) 205-207
- 232 Tuccori M, Bresci F, Guidi B, Blandizzi C, Del Tacca M, Di Paolo M. Fatal hepatitis after long-term pulse itraconazole treatment for onychomycosis. Ann Pharmacother 2008; 42 (07) 1112-1117
- 233 Pettit NN, Pisano J, Weber S, Ridgway J. Hepatic failure in a patient receiving itraconazole for pulmonary histoplasmosis - case report and literature review. Am J Ther 2016; 23 (05) e1215-e1221
- 234 Wolf R, Wolf D, Kuperman S. Focal nodular hyperplasia of the liver after intraconazole treatment. J Clin Gastroenterol 2001; 33 (05) 418-420
- 235 Sporanox (FDA). Accessed May 24, 2023 at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/020083s065lbl.pdf
- 236 Lo Re III V, Carbonari DM, Lewis JD. et al. Oral azole antifungal medications and risk of acute liver injury, overall and by chronic liver disease status. Am J Med 2016; 129 (03) 283-91.e5
- 237 Pata R, Dolkar T, Patel M, Nway N. Voriconazole-induced acute liver injury: a case report. Cureus 2021; 13 (12) e20115
- 238 Mohammed Y, Abousamra A, Abdeldayem AAI, Zafar M, Muhammad T. Voriconazole-induced cholestatic hepatotoxicity in an immune competent patient. Cureus 2022; 14 (01) e21346
- 239 Foo H, Gottlieb T. Lack of cross-hepatotoxicity between voriconazole and posaconazole. Clin Infect Dis 2007; 45 (06) 803-805
- 240 Tasleem SH, Cappell MS. Voriconazole-induced hepatotoxicity presenting with severe hepatic encephalopathy after liver transplantation. ACG Case Rep J 2019; 6 (03) 1-4
- 241 Alffenaar JW, van Assen S, de Monchy JG, Uges DR, Kosterink JG, van der Werf TS. Intravenous voriconazole after toxic oral administration. Antimicrob Agents Chemother 2010; 54 (06) 2741-2742
- 242 Vfend (FDA). Accessed May 25, 2023 at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2003/021466lbl.pdf
- 243 Vfend (EMA). Accessed May 25, 2023 at: https://www.ema.europa.eu/en/documents/product-information/vfend-epar-product-information_en.pdf