CC BY 4.0 · Organic Materials 2024; 06(02): 66-70
DOI: 10.1055/s-0044-1787016
Covalent Organic Frameworks (COFs)
Short Communication

Metal-Catalyzed Multi-Component Approach to Quinoline-Linked Covalent Organic Frameworks

a   Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, School of Chemistry and Chemical Engineering, Beijing Institute of Technology. No. 5, South Street, Zhongguancun, Haidian District, Beijing 100081, P. R. of China
,
a   Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, School of Chemistry and Chemical Engineering, Beijing Institute of Technology. No. 5, South Street, Zhongguancun, Haidian District, Beijing 100081, P. R. of China
,
a   Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, School of Chemistry and Chemical Engineering, Beijing Institute of Technology. No. 5, South Street, Zhongguancun, Haidian District, Beijing 100081, P. R. of China
› Author Affiliations


Abstract

The development of new reaction chemistry is highly desirable to construct new structural and functional covalent organic frameworks (COFs). Benefiting from the extremely large database of metal-catalyzed reaction database, we herein develop a new synthetic strategy that can generate quinoline-linked COFs via a silver-catalyzed three-component one-pot reaction and achieve functionalization by the simple replacement of alcohols. This metal-catalyzed approach to the construction of robust COF structures characterized by extended π-conjugation holds the potential to pave a novel pathway in the synthesis of COF materials endowed with both heightened stability and functionality.



Publication History

Received: 01 February 2024

Accepted after revision: 18 April 2024

Article published online:
17 May 2024

© 2024. The Authors. This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/).

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 El-Kaderi HM, Hunt JR, Mendoza-Cortes JL, Cote AP, Taylor RE, OʼKeeffe M, Yaghi OM. Science 2007; 316: 268
  • 2 Waller PJ, Gandara F, Yaghi OM. Acc. Chem. Res. 2015; 48: 3053
  • 3 Liu R, Tan KT, Gong Y, Chen Y, Li Z, Xie S, He T, Lu Z, Yang H, Jiang D. Chem. Soc. Rev. 2021; 50: 120
  • 4 Lohse MS, Bein T. Adv. Funct. Mater. 2018; 28: 1705553
  • 5 Han SS, Furukawa H, Yaghi OM, Goddard WA. J. Am. Chem. Soc. 2008; 130: 11580
  • 6 Huang N, Chen X, Krishna R, Jiang D. Angew. Chem. Int. Ed. 2015; 54: 2986
  • 7 Ding S-Y, Gao J, Wang Q, Zhang Y, Song W-G, Su C-Y, Wang W. J. Am. Chem. Soc. 2011; 133: 19816
  • 8 Wang X, Han X, Zhang J, Wu X, Liu Y, Cui Y. J. Am. Chem. Soc. 2016; 138: 12332
  • 9 Guo J, Jiang D. ACS Cent. Sci. 2020; 6: 869
  • 10 Liu J, Wang N, Ma L. Chem. Asian J. 2020; 15: 338
  • 11 Jati A, Dey K, Nurhuda M, Addicoat MA, Banerjee R, Maji B. J. Am. Chem. Soc. 2022; 144: 7822
  • 12 Vyas VS, Haase F, Stegbauer L, Savasci G, Podjaski F, Ochsenfeld C, Lotsch BV. Nat. Commun. 2015; 6: 8508
  • 13 Zhang JL, Yao LY, Yang Y, Liang WB, Yuan R, Xiao DR. Anal. Chem. 2022; 94: 3685
  • 14 Yao D, Li C, Wang H, Wen G, Liang A, Jiang Z. Sens. Actuators, B 2020; 319: 128308
  • 15 Li Y, Chen M, Han Y, Feng Y, Zhang Z, Zhang B. Chem. Mater. 2020; 32: 2532
  • 16 Cui F-Z, Xie J-J, Jiang S-Y, Gan S-X, Ma D-L, Liang R-R, Jiang G-F, Zhao X. Chem. Commun. 2019; 55: 4550
  • 17 Li Z, Zhang Y, Xia H, Mu Y, Liu X. Chem. Commun. 2016; 52: 6613
  • 18 Fang Q, Wang J, Gu S, Kaspar RB, Zhuang Z, Zheng J, Guo H, Qiu S, Yan Y. J. Am. Chem. Soc. 2015; 137: 8352
  • 19 Mitra S, Sasmal HS, Kundu T, Kandambeth S, Illath K, Diaz Diaz D, Banerjee R. J. Am. Chem. Soc. 2017; 139: 4513
  • 20 Das S, Sekine T, Mabuchi H, Irie T, Sakai J, Zhao Y, Fang Q, Negishi Y. ACS Appl. Mater. Interfaces 2022; 14: 48045
  • 21 Du C, Na W, Shao M, Shang S, Liu Y, Chen J. Chem. Mater. 2023; 35: 1395
  • 22 DeBlase CR, Silberstein KE, Thanh-Tam T, Abruna HD, Dichtel WR. J. Am. Chem. Soc. 2013; 135: 16821
  • 23 Xu F, Xu H, Chen X, Wu D, Wu Y, Liu H, Gu C, Fu R, Jiang D. Angew. Chem. Int. Ed. 2015; 54: 6814
  • 24 Li J, Jing X, Li Q, Li S, Gao X, Feng X, Wang B. Chem. Soc. Rev. 2020; 49: 3565
  • 25 Côté AP, Benin AI, Ockwig NW, OʼKeeffe M, Matzger AJ, Yaghi OM. Science 2005; 310: 1166
  • 26 Keller N, Bein T. Chem. Soc. Rev. 2021; 50: 1813
  • 27 Su Y, Li B, Xu H, Lu C, Wang S, Chen B, Wang Z, Wang W, Otake KI, Kitagawa S, Huang L, Gu C. J. Am. Chem. Soc. 2022; 144: 18218
  • 28 Li H, Chavez AD, Li H, Li H, Dichtel WR, Bredas J-L. J. Am. Chem. Soc. 2017; 139: 16310
  • 29 Qian C, Qi Q-Y, Jiang G-F, Cui F-Z, Tian Y, Zhao X. J. Am. Chem. Soc. 2017; 139: 6736
  • 30 Ma T, Kapustin EA, Yin SX, Liang L, Zhou Z, Niu J, Li LH, Wang Y, Su J, Li J, Wang X, Wang WD, Wang W, Sun J, Yaghi OM. Science 2018; 361: 48
  • 31 Vu N, Grunwald M. J. Am. Chem. Soc. 2018; 140: 3306
  • 32 Han XH, Gong K, Huang X, Yang JW, Feng X, Xie J, Wang B. Angew. Chem. Int. Ed. 2022; 61: e202202912
  • 33 Wang S, Zhang Z, Zhang H, Rajan AG, Xu N, Yang Y, Zeng Y, Liu P, Zhang X, Mao Q, He Y, Zhao J, Li B-G, Strano MS, Wang W-J. Matter 2019; 1: 1592
  • 34 Fang Q, Zhuang Z, Gu S, Kaspar RB, Zheng J, Wang J, Qiu S, Yan Y. Nat. Commun. 2014; 5: 4503
  • 35 Gu S, Hao R, Chen JJ, Chen X, Liu K, Hussain I, Liu GY, Wang ZQ, Gan QM, Guo H, Li MQ, Zhang KL, Lu ZG. Mater. Chem. Front. 2022; 6: 2545
  • 36 Veldhuizen H, Butt SA, van Leuken A, van der Linden B, Rook W, van der Zwaag S, van der Veen MA. ACS Appl. Mater. Interfaces 2023; 15: 29186
  • 37 Guan Q, Zhou L-L, Dong Y-B. J. Am. Chem. Soc. 2023; 145: 1475
  • 38 Jin E, Asada M, Xu Q, Dalapati S, Addicoat MA, Brady MA, Xu H, Nakamura T, Heine T, Chen Q, Jiang D. Science 2017; 357: 673
  • 39 Jin E, Li J, Geng K, Jiang Q, Xu H, Xu Q, Jiang D. Nat. Commun. 2018; 9: 4143
  • 40 Jadhav T, Fang Y, Patterson W, Liu C-H, Hamzehpoor E, Perepichka DF. Angew. Chem. Int. Ed. 2019; 58: 13753
  • 41 Wei S, Zhang F, Zhang W, Qiang P, Yu K, Fu X, Wu D, Bi S, Zhang F. J. Am. Chem. Soc. 2019; 141: 14272
  • 42 Wang Z, Zhang Y, Lin E, Geng S, Wang M, Liu J, Chen Y, Cheng P, Zhang Z. J. Am. Chem. Soc. 2023; 145: 21483
  • 43 Zhang B, Wei M, Mao H, Pei X, Alshmimri SA, Reimer JA, Yaghi OM. J. Am. Chem. Soc. 2018; 140: 12715
  • 44 Guan X, Li H, Ma Y, Xue M, Fang Q, Yan Y, Valtchev V, Qiu S. Nat. Chem. 2019; 11: 587
  • 45 Lu M, Zhang M, Liu CG, Liu J, Shang LJ, Wang M, Chang JN, Li SL, Lan YQ. Angew. Chem. Int. Ed. 2021; 60: 4864
  • 46 Liu J, Yang T, Wang Z-P, Wang P-L, Feng J, Ding S-Y, Wang W. J. Am. Chem. Soc. 2020; 142: 20956
  • 47 Lei Z, Chen H, Luo C, Rong Y, Hu Y, Jin Y, Long R, Yu K, Zhang W. Nat. Chem. 2022; 14: 1399
  • 48 Yang Z, Liu J, Li Y, Zhang G, Xing G, Chen L. Angew. Chem. Int. Ed. 2021; 60: 20754
  • 49 Li X-T, Zou J, Wang T-H, Ma H-C, Chen G-J, Dong Y-B. J. Am. Chem. Soc. 2020; 142: 6521
  • 50 Grunenberg L, Savasci G, Terban MW, Duppel V, Moudrakovski I, Etter M, Dinnebier RE, Ochsenfeld C, Lotsch BV. J. Am. Chem. Soc. 2021; 143: 3430
  • 51 Ren X-R, Bai B, Zhang Q, Hao Q, Guo Y, Wan L-J, Wang D. J. Am. Chem. Soc. 2022; 144: 2488
  • 52 Park Y, Kim Y, Chang S. Chem. Rev. 2017; 117: 9247
  • 53 Kumar SV, Banerjee S, Punniyamurthy T. Org. Chem. Front. 2020; 7: 1527
  • 54 Wang J-C, Kan X, Shang J-Y, Qiao H, Dong Y-B. J. Am. Chem. Soc. 2020; 142: 16915
  • 55 Wang Z, Zhang X, Liu W, Sun R, Xu X, Yan Y. Synlett 2016; 27: 1563
  • 56 General procedure for the preparation of Q-COF-1: A 10 mL Pyrex tube was charged with TAPB (42.2 mg, 0.12 mmol), DMTP (35.0 mg, 0.18 mmol), and silver trifluoromethanesulfonate (4.6 mg, 0.018 mmol). Then mesitylene (2.0 mL) was added and the mixture was sonicated for 10 min to get a homogeneous dispersion, followed by the addition of trifluoromethanesulfonic acid (3.2 µL, 0.04 mmol) and ethylene glycol (30.1 µL, 0.54 mmol). The mixture was sonicated for 10 min and sealed. The ampoule was warmed to room temperature and then kept at 120 °C without disturbance for 24 h. After being cooled to room temperature, the precipitate was collected through filtration, followed by washing three times with distilled water, EtOH, and THF, respectively. The resulting solid was dried at 120 °C for 6 h under a dynamic vacuum to afford a brown powder (77.7 mg, 98‍% yield).
  • 57 Xu H, Gao J, Jiang D. Nat. Chem. 2015; 7: 905
  • 58 Li X, Zhang C, Cai S, Lei X, Altoe V, Hong F, Urban JJ, Ciston J, Chan EM, Liu Y. Nat. Commun. 2018; 9: 2998