Journal of Pediatric Neurology
DOI: 10.1055/s-0044-1786782
Special Issue Article

Anomalies of Midbrain/Hindbrain Development and Related Disabilities: Pontocerebellar Hypoplasia, Congenital Disorders of Glycosylation, and Cerebellar Hemisphere Hypoplasia

Alessandro Gulino*
1   Pediatrics Postgraduate Residency Program, University of Catania, Catania, Italy
,
Federica Dierna*
1   Pediatrics Postgraduate Residency Program, University of Catania, Catania, Italy
,
Antonio Zanghì*
2   Department of Medical and Surgical Sciences and Advanced Technologies, Research Center for Surgery of Complex Malformation Syndromes of Transition and Adulthood, University of Catania, Catania, Italy
,
Michele Vecchio
3   Department of Biomedical and Biotechnological Sciences, Rehabilitation Unit, University of Catania, Catania, Italy
,
Stefania Salafia
4   Unit of Pediatrics, Lentini Hospital, Lentini, Italy
,
Francesco Marino
5   Department of Medical Surgical Sciences and Advanced Technologies, University Hospital Policlinico “G. Rodolico-San Marco”, Catania, Italy
,
Pietro Foti
6   Department of Medical Surgical Sciences and Advanced Technologies, Unit of Radiology 1, University Hospital Policlinico “G. Rodolico-San Marco”, Catania, Italy
,
Giuseppe Belfiore
6   Department of Medical Surgical Sciences and Advanced Technologies, Unit of Radiology 1, University Hospital Policlinico “G. Rodolico-San Marco”, Catania, Italy
,
Antonio Basile
6   Department of Medical Surgical Sciences and Advanced Technologies, Unit of Radiology 1, University Hospital Policlinico “G. Rodolico-San Marco”, Catania, Italy
,
Martino Ruggieri
7   Department of Clinical and Experimental Medicine, Unit of Clinical Pediatrics, University of Catania, Catania, Italy
,
Agata Polizzi
8   Chair of Pediatrics, Department of Educational Sciences, Chair of Pediatrics, University of Catania, Catania, Italy
› Institutsangaben

Abstract

Recent progress in developmental biology, molecular genetics, and neuroimaging has enabled a more profound comprehension of developmental disorders affecting the embryonic midbrain and hindbrain, which manifest clinically. The purpose of this review is to describe anomalies of the midbrain/hindbrain such as pontocerebellar hypoplasia (PCH), congenital disorders of glycosylation (CDG), cerebellar hemisphere hypoplasia. PCH is a group of disorders that is both clinically and genetically diverse. These disorders are identified by the hypoplasia and degeneration of the cerebellum and ventral pons. A total of 18 distinct clinical subtypes of PCH, each linked to pathogenic variants in 19 different genes, have been documented, like mutations in TSEN54 (coding a subunit of tRNA splicing endonucleases complex) and TBC1D23 which display moderate-to-severe intellectual disability (ID) and microcephaly. CDG represent a set of inherited conditions marked by impaired glycosylation of proteins and lipids. The most prevalent subtype among CDG is PMM2-CDG, inherited in a recessive manner, causing reduced activity of phosphomannomutase. Its phenotype varies from mild to severe, involving the central nervous system and affecting many other organs as well. Patients who are severely affected also exhibit visceral symptoms alongside severe ID and other neurological manifestations. Cerebellar hypoplasia (CH) is characterized by a cerebellum of diminished volume while maintaining its shape. CH exhibits a diverse range of neuroradiologic features, etiologies, clinical characteristics, and neurodevelopmental involvement. Cerebello–oculo–facio–genital syndrome is linked to a recessive MAB21L1 mutation. Jubert's syndrome, associated with a rare autosomal recessive mutation, is identified on magnetic resonance imaging by cerebellar worm hypoplasia and midbrain malformations. The rhombencephalosynapsis, characterized by vermian agenesis or hypogenesis with the fusion of the cerebellar hemispheres, emerges during embryogenesis. It can manifest alone or in conjunction with other and/or extracerebral abnormalities.



Publikationsverlauf

Eingereicht: 18. Dezember 2023

Angenommen: 03. April 2024

Artikel online veröffentlicht:
29. Mai 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Soto-Ares G, Joyes B, Lemaître MP, Vallée L, Pruvo JP. MRI in children with mental retardation. Pediatr Radiol 2003; 33 (05) 334-345
  • 2 Vincent A, Jacobson L, Plested P. et al. Antibodies affecting ion channel function in acquired neuromyotonia, in seropositive and seronegative myasthenia gravis, and in antibody-mediated arthrogryposis multiplex congenita. Ann N Y Acad Sci 1998; 841: 482-496
  • 3 Courchesne E, Pierce K. Brain overgrowth in autism during a critical time in development: implications for frontal pyramidal neuron and interneuron development and connectivity. Int J Dev Neurosci 2005; 23 (2-3): 153-170
  • 4 Trifiletti RR, Incorpora G, Polizzi A, Cocuzza MD, Bolan EA, Parano E. Aicardi syndrome with multiple tumors: a case report with literature review. Brain Dev 1995; 17 (04) 283-285
  • 5 Barkovich AJ, Millen KJ, Dobyns WB. A developmental and genetic classification for midbrain-hindbrain malformations. Brain 2009; 132 (Pt 12): 3199-3230
  • 6 Nicita F, Ruggieri M, Polizzi A. et al. Seizures and epilepsy in Sotos syndrome: analysis of 19 Caucasian patients with long-term follow-up. Epilepsia 2012; 53 (06) e102-e105
  • 7 Aida N, Yagishita A, Takada K, Katsumata Y. Cerebellar MR in Fukuyama congenital muscular dystrophy: polymicrogyria with cystic lesions. AJNR Am J Neuroradiol 1994; 15 (09) 1755-1759
  • 8 Leuzzi V, Mastrangelo M, Polizzi A. et al. Report of two never treated adult sisters with aromatic L-amino Acid decarboxylase deficiency: a portrait of the natural history of the disease or an expanding phenotype?. JIMD Rep 2015; 15: 39-45
  • 9 Ross ME, Swanson K, Dobyns WB. Lissencephaly with cerebellar hypoplasia (LCH): a heterogeneous group of cortical malformations. Neuropediatrics 2001; 32 (05) 256-263
  • 10 John AM, Ruggieri M, Ferner R, Upadhyaya M. A search for evidence of somatic mutations in the NF1 gene. J Med Genet 2000; 37 (01) 44-49
  • 11 van Reeuwijk J, Maugenre S, van den Elzen C. et al. The expanding phenotype of POMT1 mutations: from Walker-Warburg syndrome to congenital muscular dystrophy, microcephaly, and mental retardation. Hum Mutat 2006; 27 (05) 453-459
  • 12 Ranieri C, Di Tommaso S, Loconte DC. et al. In vitro efficacy of ARQ 092, an allosteric AKT inhibitor, on primary fibroblast cells derived from patients with PIK3CA-related overgrowth spectrum (PROS). Neurogenetics 2018; 19 (02) 77-91
  • 13 Poirier K, Keays DA, Francis F. et al. Large spectrum of lissencephaly and pachygyria phenotypes resulting from de novo missense mutations in tubulin alpha 1A (TUBA1A). Hum Mutat 2007; 28 (11) 1055-1064
  • 14 Ruggieri M, Tigano G, Mazzone D, Tiné A, Pavone L. Involvement of the white matter in hypomelanosis of Ito (incontinentia pigmenti achromiens). Neurology 1996; 46 (02) 485-492
  • 15 Jissendi-Tchofo P, Severino M, Nguema-Edzang B, Toure C, Soto Ares G, Barkovich AJ. Update on neuroimaging phenotypes of mid-hindbrain malformations. Neuroradiology 2015; 57 (02) 113-138
  • 16 Ruggieri M, Pavone P, Polizzi A. et al. Ophthalmological manifestations in segmental neurofibromatosis type 1. Br J Ophthalmol 2004; 88 (11) 1429-1433
  • 17 Gleeson JG, Keeler LC, Parisi MA. et al. Molar tooth sign of the midbrain-hindbrain junction: occurrence in multiple distinct syndromes. Am J Med Genet A 2004; 125A (02) 125-134 , discussion 117
  • 18 O'Connor KC, Lopez-Amaya C, Gagne D. et al. Anti-myelin antibodies modulate clinical expression of childhood multiple sclerosis. J Neuroimmunol 2010; 223 (1-2): 92-99
  • 19 Parisi MA, Dobyns WB. Human malformations of the midbrain and hindbrain: review and proposed classification scheme. Mol Genet Metab 2003; 80 (1-2): 36-53
  • 20 Ruggieri M, Pavone V, De Luca D, Franzò A, Tiné A, Pavone L. Congenital bone malformations in patients with neurofibromatosis type 1 (Nf1). J Pediatr Orthop 1999; 19 (03) 301-305
  • 21 Patel S, Barkovich AJ. Analysis and classification of cerebellar malformations. AJNR Am J Neuroradiol 2002; 23 (07) 1074-1087
  • 22 Ruggieri M, McShane MA. Parental view of epilepsy in Angelman syndrome: a questionnaire study. Arch Dis Child 1998; 79 (05) 423-426
  • 23 Lumsden A, Krumlauf R. Patterning the vertebrate neuraxis. Science 1996; 274 (5290) 1109-1115
  • 24 Pratico AD, Longo L, Mansueto S. et al. Off-label use of drugs and adverse drug reactions in pediatric units: a prospective, multicenter study. Curr Drug Saf 2018; 13 (03) 200-207
  • 25 Wojcinski A, Morabito M, Lawton AK, Stephen DN, Joyner AL. Genetic deletion of genes in the cerebellar rhombic lip lineage can stimulate compensation through adaptive reprogramming of ventricular zone-derived progenitors. Neural Dev 2019; 14 (01) 4
  • 26 Ruggieri M, Polizzi A. Segmental neurofibromatosis. J Neurosurg 2000; 93 (03) 530-532
  • 27 Haldipur P, Dang D, Millen KJ. Embryology. Handb Clin Neurol 2018; 154: 29-44
  • 28 Ruggieri M. Cutis tricolor: congenital hyper- and hypopigmented lesions in a background of normal skin with and without associated systemic features: further expansion of the phenotype. Eur J Pediatr 2000; 159 (10) 745-749
  • 29 Landsberg RL, Awatramani RB, Hunter NL. et al. Hindbrain rhombic lip is comprised of discrete progenitor cell populations allocated by Pax6. Neuron 2005; 48 (06) 933-947
  • 30 Ruggieri M, Polizzi A, Pavone L, Musumeci S. Thalamic syndrome in children with measles infection and selective, reversible thalamic involvement. Pediatrics 1998; 101 (1 Pt 1): 112-119
  • 31 Partanen J. FGF signalling pathways in development of the midbrain and anterior hindbrain. J Neurochem 2007; 101 (05) 1185-1193
  • 32 Pavone P, Praticò AD, Vitaliti G. et al. Hydranencephaly: cerebral spinal fluid instead of cerebral mantles. Ital J Pediatr 2014; 40: 79
  • 33 Chambers D, Wilson LJ, Alfonsi F. et al. Rhombomere-specific analysis reveals the repertoire of genetic cues expressed across the developing hindbrain. Neural Dev 2009; 4: 6
  • 34 Ruggieri M, Praticò AD, Scuderi A, Sorge G, Polizzi A. The multiple faces of artwork diagnoses. Lancet Neurol 2017; 16 (06) 417-418
  • 35 Doherty D, Millen KJ, Barkovich AJ. Midbrain and hindbrain malformations: advances in clinical diagnosis, imaging, and genetics. Lancet Neurol 2013; 12 (04) 381-393
  • 36 Pavone P, Praticò AD, Pavone V. et al. Ataxia in children: early recognition and clinical evaluation. Ital J Pediatr 2017; 43 (01) 6
  • 37 Ondruskova N, Cechova A, Hansikova H, Honzik T, Jaeken J. Congenital disorders of glycosylation: Still “hot” in 2020. Biochim Biophys Acta, Gen Subj 2021; 1865 (01) 129751
  • 38 Barbagallo M, Ruggieri M, Incorpora G. et al. Infantile spasms in the setting of Sturge-Weber syndrome. Childs Nerv Syst 2009; 25 (01) 111-118
  • 39 Van Schaftingen E, Jaeken J. Phosphomannomutase deficiency is a cause of carbohydrate-deficient glycoprotein syndrome type I. FEBS Lett 1995; 377 (03) 318-320
  • 40 Pavone P, Briuglia S, Falsaperla R. et al. Wide spectrum of congenital anomalies including choanal atresia, malformed extremities, and brain and spinal malformations in a girl with a de novo 5.6-Mb deletion of 13q12.11-13q12.13. Am J Med Genet A 2014; 164A (07) 1734-1743
  • 41 Hagberg BA, Blennow G, Kristiansson B, Stibler H. Carbohydrate-deficient glycoprotein syndromes: peculiar group of new disorders. Pediatr Neurol 1993; 9 (04) 255-262
  • 42 Pavone P, Praticò AD, Falsaperla R. et al. Congenital generalized hypertrichosis: the skin as a clue to complex malformation syndromes. Ital J Pediatr 2015; 41: 55
  • 43 Westphal V, Kjaergaard S, Davis JA, Peterson SM, Skovby F, Freeze HH. Genetic and metabolic analysis of the first adult with congenital disorder of glycosylation type Ib: long-term outcome and effects of mannose supplementation. Mol Genet Metab 2001; 73 (01) 77-85
  • 44 Pavone P, Praticò AD, Ruggieri M. et al. Acquired peripheral neuropathy: a report on 20 children. Int J Immunopathol Pharmacol 2012; 25 (02) 513-517
  • 45 Drouin-Garraud V, Belgrand M, Grünewald S. et al. Neurological presentation of a congenital disorder of glycosylation CDG-Ia: implications for diagnosis and genetic counseling. Am J Med Genet 2001; 101 (01) 46-49
  • 46 Pratico AD, Ruggieri M, Falsaperla R, Pavone P. A probable topiramate-induced limbs paraesthesia and rigid fingers flexion. Curr Drug Saf 2018; 13 (02) 131-136
  • 47 Barone R, Fiumara A, Jaeken J. Congenital disorders of glycosylation with emphasis on cerebellar involvement. Semin Neurol 2014; 34 (03) 357-366
  • 48 Pavone P, Falsaperla R, Ruggieri M. et al. Clinical course of N-methyl-D-aspartate receptor encephalitis and the effectiveness of cyclophosphamide treatment. J Pediatr Neurol 2017; 15: 84-49
  • 49 Giurgea I, Michel A, Le Merrer M, Seta N, de Lonlay P. Underdiagnosis of mild congenital disorders of glycosylation type Ia. Pediatr Neurol 2005; 32 (02) 121-123
  • 50 Pavone P, Nigro F, Falsaperla R. et al. Hemihydranencephaly: living with half brain dysfunction. Ital J Pediatr 2013; 39: 3
  • 51 Mader I, Döbler-Neumann M, Küker W, Stibler H, Krägeloh-Mann I. Congenital disorder of glycosylation type Ia: benign clinical course in a new genetic variant. Childs Nerv Syst 2002; 18 (1-2): 77-80
  • 52 Pavone P, Praticò AD, Gentile G. et al. A neurocutaneous phenotype with paired hypo- and hyperpigmented macules, microcephaly and stunted growth as prominent features. Eur J Med Genet 2016; 59 (05) 283-289
  • 53 Vermeer S, Kremer HP, Leijten QH. et al. Cerebellar ataxia and congenital disorder of glycosylation Ia (CDG-Ia) with normal routine CDG screening. J Neurol 2007; 254 (10) 1356-1358
  • 54 Pavone P, Falsaperla R, Ruggieri M, Praticò AD, Pavone L. West syndrome treatment: new roads for an old syndrome. Front Neurol 2013; 4: 113
  • 55 Scott K, Gadomski T, Kozicz T, Morava E. Congenital disorders of glycosylation: new defects and still counting. J Inherit Metab Dis 2014; 37 (04) 609-617
  • 56 Ruggieri M, Praticò AD, Caltabiano R, Polizzi A. Rediagnosing one of Smith's patients (John McCann) with “neuromas tumours” (1849). Neurol Sci 2017; 38 (03) 493-499
  • 57 Barone R, Carrozzi M, Parini R. et al. A nationwide survey of PMM2-CDG in Italy: high frequency of a mild neurological variant associated with the L32R mutation. J Neurol 2015; 262 (01) 154-164
  • 58 Ruggieri M, Polizzi A, Marceca GP, Catanzaro S, Praticò AD, Di Rocco C. Introduction to phacomatoses (neurocutaneous disorders) in childhood. Childs Nerv Syst 2020; 36 (10) 2229-2268
  • 59 Aebi M, Helenius A, Schenk B. et al. Carbohydrate-deficient glycoprotein syndromes become congenital disorders of glycosylation: an updated nomenclature for CDG. First International Workshop on CDGS. Glycoconj J 1999; 16 (11) 669-671
  • 60 Incorpora G, Pavone P, Castellano-Chiodo D, Praticò AD, Ruggieri M, Pavone L. Gelastic seizures due to hypothalamic hamartoma: rapid resolution after endoscopic tumor disconnection. Neurocase 2013; 19 (05) 458-461
  • 61 Grünewald S, Schollen E, Van Schaftingen E, Jaeken J, Matthijs G. High residual activity of PMM2 in patients' fibroblasts: possible pitfall in the diagnosis of CDG-Ia (phosphomannomutase deficiency). Am J Hum Genet 2001; 68 (02) 347-354
  • 62 Vitaliti G, Praticò AD, Cimino C. et al. Hepatitis B vaccine in celiac disease: yesterday, today and tomorrow. World J Gastroenterol 2013; 19 (06) 838-845
  • 63 Matthijs G, Schollen E, Pardon E. et al. Mutations in PMM2, a phosphomannomutase gene on chromosome 16p13, in carbohydrate-deficient glycoprotein type I syndrome (Jaeken syndrome). Nat Genet 1997; 16 (01) 88-92
  • 64 Leonardi S, Praticò AD, Lionetti E, Spina M, Vitaliti G, La Rosa M. Intramuscular vs intradermal route for hepatitis B booster vaccine in celiac children. World J Gastroenterol 2012; 18 (40) 5729-5733
  • 65 Aronica E, van Kempen AA, van der Heide M. et al. Congenital disorder of glycosylation type Ia: a clinicopathological report of a newborn infant with cerebellar pathology. Acta Neuropathol 2005; 109 (04) 433-442
  • 66 Palano GM, Praticò AD, Praticò ER. et al. Intossicazione accidentale da alcol etilico in un lattante di 30 giorni. Quadro clinico e follow-up neurologico. Minerva Pediatr 2007; 59 (03) 275-279
  • 67 Fernlund E, Andersson O, Ellegård R. et al. The congenital disorder of glycosylation in PGM1 (PGM1-CDG) can cause severe cardiomyopathy and unexpected sudden cardiac death in childhood. Forensic Sci Int Genet 2019; 43: 102111
  • 68 Fiumara A, Lanzafame G, Arena A. et al. COVID-19 pandemic outbreak and its psychological impact on patients with rare lysosomal diseases. J Clin Med 2020; 9 (09) 2716
  • 69 Monin ML, Mignot C, De Lonlay P. et al. 29 French adult patients with PMM2-congenital disorder of glycosylation: outcome of the classical pediatric phenotype and depiction of a late-onset phenotype. Orphanet J Rare Dis 2014; 9: 207
  • 70 Sapuppo A, Pavone P, Praticò AD, Ruggieri M, Bertino G, Fiumara A. Genotype-phenotype variable correlation in Wilson disease: clinical history of two sisters with the similar genotype. BMC Med Genet 2020; 21 (01) 128
  • 71 Stefanits H, Konstantopoulou V, Kuess M, Milenkovic I, Matula C. Initial diagnosis of the congenital disorder of glycosylation PMM2-CDG (CDG1a) in a 4-year-old girl after neurosurgical intervention for cerebral hemorrhage. J Neurosurg Pediatr 2014; 14 (05) 546-549
  • 72 Praticò AD, Leonardi S. Immunotherapy for food allergies: a myth or a reality?. Immunotherapy 2015; 7 (02) 147-161
  • 73 Linssen M, Mohamed M, Wevers RA, Lefeber DJ, Morava E. Thrombotic complications in patients with PMM2-CDG. Mol Genet Metab 2013; 109 (01) 107-111
  • 74 Salafia S, Praticò AD, Pizzo E, Greco F, Di Bella D. Hemiconvulsion-hemiplegia-epilepsy syndrome. Magnetic resonance findings in a 3-year-old boy. Neurol Neurochir Pol 2013; 47 (06) 584-589
  • 75 Mohamed M, Theodore M, Claahsen-van der Grinten H. et al. Thyroid function in PMM2-CDG: diagnostic approach and proposed management. Mol Genet Metab 2012; 105 (04) 681-683
  • 76 Praticò AD, Ruggieri M. COVID-19 vaccination for children: may be necessary for the full eradication of the disease. Pediatr Res 2021; 90 (06) 1102-1103
  • 77 Jaeken J. Congenital disorders of glycosylation. Handb Clin Neurol 2013; 113: 1737-1743
  • 78 Praticò AD, Mistrello G, La Rosa M. et al. Immunotherapy: a new horizon for egg allergy?. Expert Rev Clin Immunol 2014; 10 (05) 677-686
  • 79 Moosavi A, Kanekar S. Congenital malformations of cerebellum. Clin Perinatol 2022; 49 (03) 603-621
  • 80 Praticò AD. COVID-19 pandemic for pediatric health care: disadvantages and opportunities. Pediatr Res 2021; 89 (04) 709-710
  • 81 Pinchefsky EF, Accogli A, Shevell MI, Saint-Martin C, Srour M. Developmental outcomes in children with congenital cerebellar malformations. Dev Med Child Neurol 2019; 61 (03) 350-358
  • 82 Praticò AD, Giallongo A, Arrabito M. et al. SCN2A and its related epileptic phenotypes. J Pediatr Neurol 2023; 21: 173-185
  • 83 Aldinger KA, Timms AE, Thomson Z. et al. Redefining the etiologic landscape of cerebellar malformations. Am J Hum Genet 2019; 105 (03) 606-615
  • 84 Praticò AD, Falsaperla R, Comella M, Belfiore G, Polizzi A, Ruggieri M. Case report: a gain-of-function of hamartin may lead to a distinct “inverse TSC1-hamartin” phenotype characterized by reduced cell growth. Front Pediatr 2023; 11: 1101026
  • 85 Bar C, Kuchenbuch M, Barcia G. et al. Developmental and epilepsy spectrum of KCNB1 encephalopathy with long-term outcome. Epilepsia 2020; 61 (11) 2461-2473
  • 86 Stegeman R, Sprong MCA, Breur JMPJ. et al; CHD LifeSpan Study Group Utrecht. Early motor outcomes in infants with critical congenital heart disease are related to neonatal brain development and brain injury. Dev Med Child Neurol 2022; 64 (02) 192-199
  • 87 Ivanova EL, Mau-Them FT, Riazuddin S. et al. Homozygous truncating variants in TBC1D23 cause pontocerebellar hypoplasia and alter cortical development. Am J Hum Genet 2017; 101 (03) 428-440
  • 88 Laugwitz L, Buchert R, Groeschel S. et al. Pontocerebellar hypoplasia type 11: does the genetic defect determine timing of cerebellar pathology?. Eur J Med Genet 2020; 63 (07) 103938
  • 89 Leibovitz Z, Lerman-Sagie T, Haddad L. Fetal brain development: regulating processes and related malformations. Life (Basel) 2022; 12 (06) 809
  • 90 Lerman-Sagie T, Pogledic I, Leibovitz Z, Malinger G. A practical approach to prenatal diagnosis of malformations of cortical development. Eur J Paediatr Neurol 2021; 34: 50-61
  • 91 Adamaszek M, D'Agata F, Ferrucci R. et al. Consensus paper: cerebellum and emotion. Cerebellum 2017; 16 (02) 552-576
  • 92 Wafik M, Taylor J, Lester T, Gibbons RJ, Shears DJ. 2 new cases of pontocerebellar hypoplasia type 10 identified by whole exome sequencing in a Turkish family. Eur J Med Genet 2018; 61 (05) 273-279
  • 93 Marin-Valencia I, Gerondopoulos A, Zaki MS. et al. Homozygous mutations in TBC1D23 lead to a non-degenerative form of pontocerebellar hypoplasia. Am J Hum Genet 2017; 101 (03) 441-450
  • 94 Malinger G, Ginath S, Lerman-Sagie T, Watemberg N, Lev D, Glezerman M. The fetal cerebellar vermis: normal development as shown by transvaginal ultrasound. Prenat Diagn 2001; 21 (08) 687-692
  • 95 Leibovitz Z, Shkolnik C, Haratz KK, Malinger G, Shapiro I, Lerman-Sagie T. Assessment of fetal midbrain and hindbrain in mid-sagittal cranial plane by three-dimensional multiplanar sonography. Part 1: comparison of new and established nomograms. Ultrasound Obstet Gynecol 2014; 44 (05) 575-580
  • 96 Expanded Journal of Maternal-Fetal & Neonatal Medicine. Expanded Journal of Maternal-Fetal & Neonatal Medicine. J Matern Fetal Neonatal Med 2012; 25 (06) 551
  • 97 Guimaraes CVA, Dahmoush HM. Fetal brain anatomy. Neuroimaging Clin N Am 2022; 32 (03) 663-681
  • 98 Guibaud L. Fetal cerebral ventricular measurement and ventriculomegaly: time for procedure standardization. Ultrasound Obstet Gynecol 2009; 34 (02) 127-130
  • 99 Levine D, Cavazos C, Kazan-Tannus JF. et al. Evaluation of real-time single-shot fast spin-echo MRI for visualization of the fetal midline corpus callosum and secondary palate. AJR Am J Roentgenol 2006; 187 (06) 1505-1511
  • 100 Tocchio S, Kline-Fath B, Kanal E, Schmithorst VJ, Panigrahy A. MRI evaluation and safety in the developing brain. Semin Perinatol 2015; 39 (02) 73-104
  • 101 Triulzi F, Parazzini C, Righini A. MRI of fetal and neonatal cerebellar development. Semin Fetal Neonatal Med 2005; 10 (05) 411-420
  • 102 Fame RM, MacDonald JL, Macklis JD. Development, specification, and diversity of callosal projection neurons. Trends Neurosci 2011; 34 (01) 41-50
  • 103 Sullo F. et al. Cerebellotrigeminal dermal dysplasia (Gómez-López-Hernández syndrome). J Pediatr Neurol 2018; 16: 362-368
  • 104 Saugier-Veber P, Marguet F, Vezain M. et al. Pontocerebellar hypoplasia with rhombencephalosynapsis and microlissencephaly expands the spectrum of PCH type 1B. Eur J Med Genet 2020; 63 (04) 103814
  • 105 Mariani M, Corradi A, Baldessari D. et al. Mab21, the mouse homolog of a C. elegans cell-fate specification gene, participates in cerebellar, midbrain and eye development. Mech Dev 1998; 79 (1-2): 131-135
  • 106 Bruel AL, Masurel-Paulet A, Rivière JB. et al. Autosomal recessive truncating MAB21L1 mutation associated with a syndromic scrotal agenesis. Clin Genet 2017; 91 (02) 333-338
  • 107 Rad A, Altunoglu U, Miller R. et al. MAB21L1 loss of function causes a syndromic neurodevelopmental disorder with distinctive cerebellar, ocular, craniofacial and genital features (COFG syndrome). J Med Genet 2019; 56 (05) 332-339
  • 108 Dehghani M, Mojarad M, Ghayoor Karimiani E. et al. A common ancestral Asn242Ser mutation in TMEM67 identified in multiple Iranian families with Joubert syndrome. Public Health Genomics 2017; 20 (03) 188-193
  • 109 Tavano A, Borgatti R. Evidence for a link among cognition, language and emotion in cerebellar malformations. Cortex 2010; 46 (07) 907-918