CC BY-NC-ND 4.0 · Journal of Diabetes and Endocrine Practice 2024; 07(02): 066-076
DOI: 10.1055/s-0044-1782673
Review Article

Sodium-Glucose Cotransporter 2 Inhibitors' Mechanism of Action and Use in Kidney Transplantation Recipients: Extended Review and Update

Elmukhtar Habas
1   Department of Medicine, Hamad Medical Corporation, Doha, Qatar
,
Ala Habas
2   Department of Internal Medicine, Tripoli Central Hospital, Tripoli, Libya
,
Islam Elzouki
1   Department of Medicine, Hamad Medical Corporation, Doha, Qatar
,
Gamal Alfitori
1   Department of Medicine, Hamad Medical Corporation, Doha, Qatar
,
Elmehdi Arrayes
1   Department of Medicine, Hamad Medical Corporation, Doha, Qatar
,
Amnna Rayani
3   Department of Nephrology, Tripoli Children Hospital, Tripoli, Libya
,
Kalifa Farfar
1   Department of Medicine, Hamad Medical Corporation, Doha, Qatar
,
Eshrak Habas
4   Department of Medicine, Faculty of Medicine, University of Tripoli, Tripoli, Libya
,
Abdel-Naser Elzouki
5   Department of Medicine, Hamad Hamad Medical Corporation, College of Medicine, Qatar University, Doha, Qatar
› Author Affiliations
Funding and Sponsorship None.

Abstract

Five sodium-glucose cotransporters (SGLTs) protein family members are important for regulating blood glucose levels. The essential cotransporters for glucose reabsorption by proximal convoluted tubule are SGLT1 and 2. The newest recommendations advocate GLT2 inhibitors as first-line treatment for type 2 diabetes (T2D) with and without chronic kidney disease (CKD), improving CKD and cardiovascular outcomes.

SGLT2 inhibitors enhance kidney transplant patients' life quality, delay CKD progression, have renoprotective effects, and reduce cardiovascular disease in CKD patients, despite minimal published evidence on the usage of SGLT2 inhibitors in kidney transplantation recipients (KTxRs) with T2D or new-onset T2D. They preserve and improve renal function and cardiovascular outcomes in KTxRs. SGLT2 inhibitors' safety issues have prevented KTxRs from participating in major randomized studies, leaving doctors and patients unsure whether these extraordinary drugs outweigh the risks.

This extended review analyzes the established mechanisms through which SGLT2 inhibitors exert their positive effects, evaluate the potential advantages and drawbacks of these agents in KTx, and examine the current research findings on using SGLT2 inhibitors in KTxRs. Additionally, potential avenues for future research will be suggested. Different phrases were used to search for recent original and review articles published between January 2020 and November 2023 in PubMed, Google Scholar, Scopus, EMBASE, and Google to achieve the review objectives.

Authors' Contributions

All the named authors contributed to the conception, data collection, critical review of the literature, and manuscript drafting and finalization. They all reviewed the final version of the manuscript before its submission and they all accept collective responsibility for its contents.


Compliance with Ethical Principles

No prior ethical approval is required for review article type of study.




Publication History

Article published online:
23 April 2024

© 2024. Gulf Association of Endocrinology and Diabetes (GAED). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Johansen KL, Chertow GM, Foley RN. et al. US Renal Data System 2020 Annual Data Report: epidemiology of kidney disease in the United States. Am J Kidney Dis 2021; 77 (4, Suppl 1): A7-A8
  • 2 Hsia DS, Grove O, Cefalu WT. An update on sodium-glucose co-transporter-2 inhibitors for the treatment of diabetes mellitus. Curr Opin Endocrinol Diabetes Obes 2017; 24 (01) 73-79
  • 3 Menke A, Casagrande S, Geiss L. et al Prevalence of and trends in diabetes among adults in the United States, 1988-2012. JAMA 2015; 314 (10) 1021-1029
  • 4 Meier-Kriesche HU, Ojo AO, Port FK. et al Survival improvement among patients with end-stage renal disease: trends over time for transplant recipients and wait-listed patients. J Am Soc Nephrol 2001; 12 (06) 1293-1296
  • 5 Wyld M, Morton RL, Hayen A. et al A systematic review and meta-analysis of utility-based quality of life in chronic kidney disease treatments. PLoS Med 2012; 9 (09) e1001307
  • 6 Birdwell KA, Park M. Post-transplant cardiovascular disease. Clin J Am Soc Nephrol 2021; 16 (12) 1878-1889
  • 7 Jenssen T, Hartmann A. Post-transplant diabetes mellitus in patients with solid organ transplants. Nat Rev Endocrinol 2019; 15 (03) 172-188
  • 8 Cosio FG, Hickson LJ, Griffin MD. et al Patient survival and cardiovascular risk after kidney transplantation: the challenge of diabetes. Am J Transplant 2008; 8 (03) 593-599
  • 9 Neal B, Perkovic V, Mahaffey KW. et al; CANVAS Program Collaborative Group. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 2017; 377 (07) 644-657
  • 10 Packer M, Anker SD, Butler J. et al; EMPEROR-Reduced Trial Investigators. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med 2020; 383 (15) 1413-1424
  • 11 Perkovic V, Jardine MJ, Neal B. et al; CREDENCE Trial Investigators. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med 2019; 380 (24) 2295-2306
  • 12 Wiviott SD, Raz I, Bonaca MP. et al; DECLARE–TIMI 58 Investigators. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med 2019; 380 (04) 347-357
  • 13 Cowie MR, Fisher M. SGLT2 inhibitors: mechanisms of cardiovascular benefit beyond glycaemic control. Nat Rev Cardiol 2020; 17 (12) 761-772
  • 14 Wanner C, Inzucchi SE, Lachin JM. et al; EMPA-REG OUTCOME Investigators. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med 2016; 375 (04) 323-334
  • 15 Perkovic V, de Zeeuw D, Mahaffey KW. et al. Canagliflozin and renal outcomes in type 2 diabetes: results from the CANVAS Program randomised clinical trials. Lancet Diabetes Endocrinol 2018; 6 (09) 691-704
  • 16 Ujjawal A, Schreiber B, Verma A. Sodium-glucose cotransporter-2 inhibitors (SGLT2i) in kidney transplant recipients: what is the evidence?. Ther Adv Endocrinol Metab 2022;13:20420188221090001
  • 17 Gerich JE. Role of the kidney in normal glucose homeostasis and in the hyperglycaemia of diabetes mellitus: therapeutic implications. Diabet Med 2010; 27 (02) 136-142
  • 18 Abdul-Ghani MA, Norton L, DeFronzo RA. Renal sodium-glucose cotransporter inhibition in the management of type 2 diabetes mellitus. Am J Physiol Renal Physiol 2015; 309 (11) F889-F900
  • 19 Chen J, Williams S, Ho S. et al. Quantitative PCR tissue expression profiling of the human SGLT2 gene and related family members. Diabetes Ther 2010; 1 (02) 57-92
  • 20 Bakris GL, Fonseca VA, Sharma K. et al Renal sodium-glucose transport: role in diabetes mellitus and potential clinical implications. Kidney Int 2009; 75 (12) 1272-1277
  • 21 Fonseca-Correa JI, Correa-Rotter R. Sodium-glucose cotransporter 2 inhibitors mechanisms of action: a review. Front Med (Lausanne) 2021; 8: 777861
  • 22 Lee YJ, Lee YJ, Han HJ. Regulatory mechanisms of Na(+)/glucose cotransporters in renal proximal tubule cells. Kidney Int Suppl 2007; (106) S27-S35
  • 23 Zhang Q, Zhou S, Liu L. Efficacy and safety evaluation of SGLT2i on blood pressure control in patients with type 2 diabetes and hypertension: a new meta-analysis. Diabetol Metab Syndr 2023; 15 (01) 118
  • 24 DeFronzo RA, Norton L, Abdul-Ghani M. Renal, metabolic and cardiovascular considerations of SGLT2 inhibition. Nat Rev Nephrol 2017; 13 (01) 11-26
  • 25 DeFronzo RA, Hompesch M, Kasichayanula S. et al. Characterization of renal glucose reabsorption in response to dapagliflozin in healthy subjects and subjects with type 2 diabetes. Diabetes Care 2013; 36 (10) 3169-3176
  • 26 Rahmoune H, Thompson PW, Ward JM. et al Glucose transporters in human renal proximal tubular cells isolated from the urine of patients with non-insulin-dependent diabetes. Diabetes 2005; 54 (12) 3427-3434
  • 27 Vallon V, Thomson SC. The tubular hypothesis of nephron filtration and diabetic kidney disease. Nat Rev Nephrol 2020; 16 (06) 317-336
  • 28 Soták M, Marks J, Unwin RJ. Putative tissue location and function of the SLC5 family member SGLT3. Exp Physiol 2017; 102 (01) 5-13
  • 29 Wright EM. Glucose transport families SLC5 and SLC50. Mol Aspects Med 2013; 34 (2-3): 183-196
  • 30 Vallon V. Glucose transporters in the kidney in health and disease. Pflugers Arch 2020; 472 (09) 1345-1370
  • 31 Wright EM, Loo DDF, Hirayama BA. Biology of human sodium glucose transporters. Physiol Rev 2011; 91 (02) 733-794
  • 32 Mueckler M. Facilitative glucose transporters. Eur J Biochem 1994; 219 (03) 713-725
  • 33 Rayner DV, Thomas ME, Trayhurn P. Glucose transporters (GLUTs 1-4) and their mRNAs in regions of the rat brain: insulin-sensitive transporter expression in the cerebellum. Can J Physiol Pharmacol 1994; 72 (05) 476-479
  • 34 Leturque A, Brot-Laroche E, Le Gall M. GLUT2 mutations, translocation, and receptor function in diet sugar managing. Am J Physiol Endocrinol Metab 2009; 296 (05) E985-E992
  • 35 Wright EM, Ghezzi C, Loo DDF. Novel and unexpected functions of SGLTs. Physiology (Bethesda) 2017; 32 (06) 435-443
  • 36 Diez-Sampedro A, Hirayama BA, Osswald C. et al. A glucose sensor hiding in a family of transporters. Proc Natl Acad Sci U S A 2003; 100 (20) 11753-11758
  • 37 Kothinti RK, Blodgett AB, North PE. et al A novel SGLT is expressed in the human kidney. Eur J Pharmacol 2012; 690 (1-3): 77-83
  • 38 Soták M, Casselbrant A, Rath E. et al. Intestinal sodium/glucose cotransporter 3 expression is epithelial and downregulated in obesity. Life Sci 2021; 267: 118974
  • 39 Habtemariam S. The molecular pharmacology of phloretin: anti-inflammatory mechanisms of action. Biomedicines 2023; 11 (01) 143
  • 40 Ehrenkranz JRL, Lewis NG, Kahn CR. et al Phlorizin: a review. Diabetes Metab Res Rev 2005; 21 (01) 31-38
  • 41 Ghezzi C, Loo DDF, Wright EM. Physiology of renal glucose handling via SGLT1, SGLT2 and GLUT2. Diabetologia 2018; 61 (10) 2087-2097
  • 42 Rossetti L, Smith D, Shulman GI. et al Correction of hyperglycemia with phlorizin normalizes tissue sensitivity to insulin in diabetic rats. J Clin Invest 1987; 79 (05) 1510-1515
  • 43 Adachi T, Yasuda K, Okamoto Y. et al. T-1095, a renal Na+-glucose transporter inhibitor, improves hyperglycemia in streptozotocin-induced diabetic rats. Metabolism 2000; 49 (08) 990-995
  • 44 National Kidney Foundation. Sodium-glucose cotransporter-2 (SGLT2) inhibitors. Accessed December 6, 2023 at: https://www.kidney.org/atoz/content/sglt2-inhibitors
  • 45 Tsai WC, Wu HY, Peng YS. et al. Association of intensive blood pressure control and kidney disease progression in nondiabetic patients with chronic kidney disease: a systematic review an. JAMA Intern Med 2017; 177 (06) 792-799
  • 46 Abdul-Ghani MA, DeFronzo RA, Norton L. Novel hypothesis to explain why SGLT2 inhibitors inhibit only 30-50% of filtered glucose load in humans. Diabetes 2013; 62 (10) 3324-3328
  • 47 Del Prato S, Nauck M, Durán-Garcia S. et al. Long-term glycaemic response and tolerability of dapagliflozin versus a sulphonylurea as add-on therapy to metformin in patients with type 2 diabetes: 4-year data. Diabetes Obes Metab 2015; 17 (06) 581-590
  • 48 Ferrannini E, Muscelli E, Frascerra S. et al. Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients. J Clin Invest 2014; 124 (02) 499-508
  • 49 Merovci A, Mari A, Solis-Herrera C. et al. Dapagliflozin lowers plasma glucose concentration and improves β-cell function. J Clin Endocrinol Metab 2015; 100 (05) 1927-1932
  • 50 Heerspink HJL, Stefánsson BV, Correa-Rotter R. et al; DAPA-CKD Trial Committees and Investigators. Dapagliflozin in patients with chronic kidney disease. N Engl J Med 2020; 383 (15) 1436-1446
  • 51 Rosenstock J, Hansen L, Zee P. et al. Dual add-on therapy in type 2 diabetes poorly controlled with metformin monotherapy: a randomized double-blind trial of saxagliptin plus dapagliflozin addition versus single addition of saxagliptin or dapagliflozin to metformin. Diabetes Care 2015; 38 (03) 376-383
  • 52 Skrtić M, Yang GK, Perkins BA. et al. Characterisation of glomerular haemodynamic responses to SGLT2 inhibition in patients with type 1 diabetes and renal hyperfiltration. Diabetologia 2014; 57 (12) 2599-2602
  • 53 Gérard AO, Laurain A, Favre G. et al Activation of the tubulo-glomerular feedback by SGLT2 inhibitors in patients with type 2 diabetes and advanced chronic kidney disease: toward the end of a myth?. Diabetes Care 2022; 45 (10) e148-e149
  • 54 Meraz-Muñoz AY, Weinstein J, Wald R. eGFR decline after SGLT2 inhibitor initiation: the tortoise and the hare reimagined. Kidney360 2021; 2 (06) 1042-1047
  • 55 Hillebrand U, Suwelack BM, Loley K. et al. Blood pressure, antihypertensive treatment, and graft survival in kidney transplant patients. Transpl Int 2009; 22 (11) 1073-1080
  • 56 Cassis P, Locatelli M, Cerullo D. et al. SGLT2 inhibitor dapagliflozin limits podocyte damage in proteinuric nondiabetic nephropathy. JCI Insight 2018; 3 (15) 98720
  • 57 Korbut AI, Taskaeva IS, Bgatova NP. et al. SGLT2 inhibitor empagliflozin and DPP4 inhibitor linagliptin reactivate glomerular autophagy in db/db mice, a model of type 2 diabetes. Int J Mol Sci 2020; 21 (08) 2987
  • 58 DeFronzo RA, Reeves WB, Awad AS. Pathophysiology of diabetic kidney disease: impact of SGLT2 inhibitors. Nat Rev Nephrol 2021; 17 (05) 319-334
  • 59 Scheen AJ. Pharmacodynamics, efficacy and safety of sodium-glucose co-transporter type 2 (SGLT2) inhibitors for the treatment of type 2 diabetes mellitus. Drugs 2015; 75 (01) 33-59
  • 60 Zhou B, Bentham J, Di Cesare M. et al; NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in blood pressure from 1975 to 2015: a pooled analysis of 1479 population-based measurement studies with 19·1 million participants. Lancet 2017; 389 (10064): 37-55
  • 61 Abdul-Ghani MA, Norton L, DeFronzo RA. Efficacy and safety of SGLT2 inhibitors in the treatment of type 2 diabetes mellitus. Curr Diab Rep 2012; 12 (03) 230-238
  • 62 American Diabetes Association. Pharmacologic approaches to glycemic treatment: standards of medical care in diabetes 2021. Diabetes Care 2021; 44 (Suppl. 01) S111-S124
  • 63 Ma H, Lin YH, Dai LZ. et al Efficacy and safety of GLP-1 receptor agonists versus SGLT-2 inhibitors in overweight/obese patients with or without diabetes mellitus: a systematic review and network meta-analysis. BMJ Open 2023; 13 (03) e061807
  • 64 Frieling K, Monte SV, Jacobs D. et al Weight loss differences seen between glucagon-like peptide-1 receptor agonists and sodium-glucose cotransporter-2 inhibitors for treatment of type 2 diabetes. J Am Pharm Assoc (2003) 2021; 61 (06) 772-777
  • 65 Nespoux J, Vallon V. SGLT2 inhibition and kidney protection. Clin Sci (Lond) 2018; 132 (12) 1329-1339
  • 66 O'Neill J, Fasching A, Pihl L. et al Acute SGLT inhibition normalizes O2 tension in the renal cortex but causes hypoxia in the renal medulla in anaesthetized control and diabetic rats. Am J Physiol Renal Physiol 2015; 309 (03) F227-F234
  • 67 Layton AT, Vallon V, Edwards A. Modeling oxygen consumption in the proximal tubule: effects of NHE and SGLT2 inhibition. Am J Physiol Renal Physiol 2015; 308 (12) F1343-F1357
  • 68 Layton AT, Vallon V, Edwards A. Predicted consequences of diabetes and SGLT inhibition on transport and oxygen consumption along a rat nephron. Am J Physiol Renal Physiol 2016; 310 (11) F1269-F1283
  • 69 Habas Sr E, Al Adab A, Arryes M. et al. Anemia and hypoxia impact on chronic kidney disease onset and progression: review and updates. Cureus 2023; 15 (10) e46737
  • 70 Vallon V, Rose M, Gerasimova M. et al. Knockout of Na-glucose transporter SGLT2 attenuates hyperglycemia and glomerular hyperfiltration but not kidney growth or injury in diabetes mellitus. Am J Physiol Renal Physiol 2013; 304 (02) F156-F167
  • 71 Sano M, Takei M, Shiraishi Y. et al Increased hematocrit during sodium-glucose cotransporter 2 inhibitor therapy indicates recovery of tubulointerstitial function in diabetic kidneys. J Clin Med Res 2016; 8 (12) 844-847
  • 72 Stefánsson BV, Heerspink HJL, Wheeler DC. et al. Correction of anemia by dapagliflozin in patients with type 2 diabetes. J Diabetes Complications 2020; 34 (12) 107729
  • 73 Ghanim H, Abuaysheh S, Hejna J. et al. Dapagliflozin suppresses hepcidin and increases erythropoiesis. J Clin Endocrinol Metab 2020; 105 (04) dgaa057
  • 74 Bonnet F, Scheen AJ. Effects of SGLT2 inhibitors on systemic and tissue low-grade inflammation: the potential contribution to diabetes complications and cardiovascular disease. Diabetes Metab 2018; 44 (06) 457-464
  • 75 Yaribeygi H, Butler AE, Atkin SL. et al Sodium-glucose cotransporter 2 inhibitors and inflammation in chronic kidney disease: possible molecular pathways. J Cell Physiol 2018; 234 (01) 223-230
  • 76 Takagi S, Li J, Takagaki Y. et al. Ipragliflozin improves mitochondrial abnormalities in renal tubules induced by a high-fat diet. J Diabetes Investig 2018; 9 (05) 1025-1032
  • 77 Lee TM, Chang NC, Lin SZ. Dapagliflozin, a selective SGLT2 inhibitor, attenuated cardiac fibrosis by regulating the macrophage polarization via STAT3 signaling in infarcted rat hearts. Free Radic Biol Med 2017; 104: 298-310
  • 78 Pirklbauer M, Sallaberger S, Staudinger P. et al. Empagliflozin inhibits il-1β-mediated inflammatory response in human proximal tubular cells. Int J Mol Sci 2021; 22 (10) 1-12
  • 79 Neuwirt H, Burtscher A, Cherney D. et al Tubuloglomerular feedback in renal glucosuria: mimicking long-term SGLT-2 inhibitor therapy. Kidney Med 2019; 2 (01) 76-79
  • 80 Cherney DZ, Perkins BA, Soleymanlou N. et al. Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation 2014; 129 (05) 587-597
  • 81 Meyrier A. Nephrosclerosis: update on a centenarian. Nephrol Dial Transplant 2015; 30 (11) 1833-1841
  • 82 van Bommel EJM, Muskiet MHA, van Baar MJB. et al. The renal hemodynamic effects of the SGLT2 inhibitor dapagliflozin are caused by post-glomerular vasodilatation rather than pre-glomerular vasoconstriction in metformin-treated patients with type 2 diabetes in the randomized, double-blind RED trial. Kidney Int 2020; 97 (01) 202-212
  • 83 Esnault VL, Ekhlas A, Nguyen JM, Moranne O. Diuretic uptitration with half dose combined ACEI + ARB better decreases proteinuria than combined ACEI + ARB uptitration. Nephrol Dial Transplant 2010; 25 (07) 2218-2224
  • 84 Vart P, Vaduganathan M, Jongs N. et al. Estimated lifetime benefit of combined RAAS and SGLT2 inhibitor therapy in patients with albuminuric CKD without diabetes. Clin J Am Soc Nephrol 2022; 17 (12) 1754-1762
  • 85 van Poelgeest EP, Handoko ML, Muller M. et al. EUGMS Task & Finish group on Fall-risk-increasing drugs. Diuretics, SGLT2 inhibitors and falls in older heart failure patients: to prescribe or to deprescribe? A clinical review. Eur Geriatr Med 2023; 14 (04) 659-674
  • 86 Alkabbani W, Zongo A, Minhas-Sandhu JK. et al. Five comparative cohorts to assess the risk of genital tract infections associated with sodium-glucose cotransporter-2 inhibitors initiation in type 2 diabetes mellitus. Diabet Med 2022; 39 (08) e14858
  • 87 Bersoff-Matcha SJ, Chamberlain C, Cao C. et al Fournier gangrene associated with sodium-glucose cotransporter-2 inhibitors: a review of spontaneous postmarketing cases. Ann Intern Med 2019; 170 (11) 764-769
  • 88 Hart A, Smith JM, Skeans MA. et al. OPTN/SRTR 2018 annual data report: kidney. Am J Transplant 2020; 20 (1, Suppl s1): 20-130
  • 89 Fishman JA. Infection in solid-organ transplant recipients. N Engl J Med 2007; 357 (25) 2601-2614
  • 90 Al Tamimi AR, Alotaibi WS, Aljohani RM. et al The impact of urinary tract infections in kidney transplant recipients: a six-year single-center experience. Cureus 2023; 15 (08) e44458
  • 91 Zaccardi F, Webb DR, Htike ZZ. et al Efficacy and safety of sodium-glucose co-transporter-2 inhibitors in type 2 diabetes mellitus: systematic review and network meta-analysis. Diabetes Obes Metab 2016; 18 (08) 783-794
  • 92 Wang D, Hu B, Hu C. et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020; 323 (11) 1061-1069
  • 93 Mahling M, Schork A, Nadalin S. et al Sodium-glucose cotransporter 2 (SGLT2) inhibition in kidney transplant recipients with diabetes mellitus. Kidney Blood Press Res 2019; 44 (05) 984-992
  • 94 Palmer BF, Clegg DJ. Euglycemic ketoacidosis as a complication of SGLT2 inhibitor therapy. Clin J Am Soc Nephrol 2021; 16 (08) 1284-1291
  • 95 Liu J, Li L, Li S. et al. Sodium-glucose co-transporter-2 inhibitors and the risk of diabetic ketoacidosis in patients with type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Diabetes Obes Metab 2020; 22 (09) 1619-1627
  • 96 Chang HY, Singh S, Mansour O. et al Association between sodium-glucose cotransporter 2 inhibitors and lower extremity amputation among patients with type 2 diabetes. JAMA Intern Med 2018; 178 (09) 1190-1198
  • 97 Abbott KC, Bernet VJ, Agodoa LY. et al Diabetic ketoacidosis and hyperglycemic hyperosmolar syndrome after renal transplantation in the United States. BMC Endocr Disord 2003; 3 (01) 1
  • 98 Dhatariya KK, Glaser NS, Codner E. et al Diabetic ketoacidosis. Nat Rev Dis Primers 2020; 6 (01) 40
  • 99 Nadkarni GN, Ferrandino R, Chang A. et al. Acute kidney injury in patients on SGLT2 inhibitors: a propensity-matched analysis. Diabetes Care 2017; 40 (11) 1479-1485
  • 100 Beshyah SA, Beshyah AS, Beshyah WS. et al. Use of SGLT2 inhibitors in diabetic renal transplant recipients: a mixed method exploratory exercise. Int J Diabetes Metab 2018; 24: 16-21
  • 101 Lin Y, Mok M, Harrison J. et al. Use of sodium-glucose co-transporter 2 inhibitors in solid organ transplant recipients with pre-existing type 2 or post-transplantation diabetes mellitus: a systematic review. Transplant Rev (Orlando) 2023; 37 (01) 100729