Klin Monbl Augenheilkd 2018; 235(02): 163-174
DOI: 10.1055/s-0044-101621
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Stellenwert vom Homocystein beim Glaukom

Significance of Homocysteine in Glaucoma
Anselm Jünemann
1   Universitätsaugenklinik, Universitätsmedizin Rostock, Rostock
,
Robert Rejdak
2   Tadeusz Krwawicz Chair of Ophthalmology, Medical University, Chmielna, Poland
,
Bettina Hohberger
3   Universitätsklinikum Erlangen, Augenklinik, Erlangen
› Author Affiliations
Further Information

Publication History

eingereicht 22 January 2018

akzeptiert 23 January 2018

Publication Date:
15 February 2018 (online)

Zusammenfassung

In der multifaktoriellen Pathogenese der glaukomatösen Optikusatrophie spielen endotheliale Dysfunktion und vaskuläre Dysregulation eine Rolle. Eine Hyperhomocysteinämie als Risikofaktor für die endotheliale Dysfunktion ist sowohl mit dem primären Offenwinkelglaukom als auch mit dem sekundären Offenwinkelglaukom bei Pseudoexfoliationssyndrom assoziiert. In dieser Übersichtsarbeit wird die aktuelle Datenlage zur Assoziation zwischen Homocysteinmetabolismus und Glaukomerkrankung dargelegt sowie eine mögliche Rolle der Hyperhomocysteinämie in der Pathogenese und Progression der Glaukomerkrankung erläutert. Die Bedeutung von Homocystein für die Regulationsstörung der extrazellulären Matrix, der Vasotoxizität, der Neurodegeneration sowie der Epigenetik wird dargelegt. Die Prävention und Therapie der Glaukomerkrankung durch Beeinflussung des Homocysteinspiegels wird diskutiert.

Abstract

Endothelial dysfunction and vascular dysregulation play a role in the multifactorial pathogenesis of glaucomatous optic nerve atrophy. Hyperhomocysteinemia is a risk factor for endothelial dysfunction and is associated with primary open-angle glaucoma as well as secondary open-angle glaucoma in the pseudoexfoliation syndrome. This paper reviews the literature on the association between homocysteine metabolism and glaucomatous disease and explains the possible role of hyperhomocysteinemia in the pathogenesis and progression of glaucoma. We discuss the role of exogenous modifiable risk factors for the prevention and therapy of glaucoma, as well as modification of these factors by changes in life style, such as weight reduction, changes in nutrition and physical activity. The roles of homocysteine in regulating the extracellular matrix, vasotoxicity, neurodegeneration, and epigenetics are explained. Prevention and therapy of glaucoma by regulation of homocysteine levels are discussed.

 
  • Literatur

  • 1 Jünemann A. Medicinal glaucoma therapy. What can we learn from large randomized clinical trials?. Ophthalmologe 2013; 110: 1134-1148
  • 2 Jünemann A, Huchzermeyer C, Rejdak R. et al. Dyslipidämien und Glaukome. Klin Monatsbl Augenheilkd 2014; 231: 1203-1214
  • 3 Škovierová H, Vidomanová E, Mahmood S. et al. The molecular and cellular effect of homocysteine metabolism imbalance on human health. Int J Mol Sci 2016; 17: 1733-1751
  • 4 Seshadri S, Beiser A, Selhub J. et al. Plasma homocysteine as a risk factor for dementia and Alzheimerʼs disease. N Engl J Med 2002; 346: 476-483
  • 5 Joosten E, Lesaffre E, Riezler R. Are different reference intervals for methylmalonic acid and total homocysteine necessary in elderly people?. Eur J Haematol 1996; 57: 222-226
  • 6 Rasmussen K, Moller J, Lyngbak M. et al. Age- and gender-specific reference intervals for total homocysteine and methylmalonic acid in plasma before and after vitamin supplementation. Clin Chem 1996; 42: 630-636
  • 7 Ubbink JB, Becker PJ, Vermaak WJ. et al. Results of B-vitamin supplementation study used in a prediction model to define a reference range for plasma homocysteine. Clin Chem 1995; 41: 1033-1037
  • 8 Nygard O, Nordrehaug JE, Refsum H. et al. Plasma homocysteine levels and mortality in patients with coronary artery disease. N Engl J Med 1997; 337: 230-236
  • 9 Vessani RM, Ritch R, Liebmann JM. et al. Plasma homocysteine is elevated in patients with exfoliation syndrome. Am J Ophthalmol 2003; 136: 41-46
  • 10 Hankey GJ, Eikelboom JW. Homocysteine and vascular disease. Lancet 1999; 354: 407-413
  • 11 Andreotti F, Burzotta F, Manzoli A. et al. Homocysteine and risk of cardiovascular disease. J Thromb Thrombolysis 2000; 9: 13-21
  • 12 Meleady R, Graham I. Plasma homocysteine as a cardiovascular risk factor: causal, consequential, or of no consequence?. Nutr Rev 1999; 57: 299-305
  • 13 Schnyder G, Roffi M, Pin R. et al. Decreased rate of coronary restenosis after lowering of plasma homocysteine levels. N Engl J Med 2000; 345: 1593-1600
  • 14 Janssen MC, den Heijer M, Cruysberg JR. et al. Retinal vein occlusion: a form of venous thrombosis or a complication of atherosclerosis? A meta-analysis of thrombophilic factors. Thromb Haemost 2005; 93: 1021-1026
  • 15 Ueland PM, Nygård O, Vollset SE. et al. The Hordaland homocysteine studies. Lipids 2001; 36 (Suppl.) S33-S39
  • 16 Bleich S, Jünemann A, von Ahsen N. et al. Homocysteine and risk of open-angle glaucoma. J Neural Transm (Vienna) 2002; 109: 1499-1504
  • 17 Roedl JB, Bleich S, Reulbach U. et al. Homocysteine levels in aqueous humor and plasma of patients with primary open-angle glaucoma. J Neural Transm (Vienna) 2007; 114: 445-450
  • 18 Roedl JB, Bleich S, Schlotzer-Schrehardt U. et al. Increased homocysteine levels in tear fluid of patients with primary open-angle glaucoma. Ophthalmic Res 2008; 40: 249-256
  • 19 Clement CI, Goldberg I. Methylenetetrahydrofolate reductase 677 C–T and homocysteine levels in Turkish patients with pseudoexfoliation. Clin Exp Ophthalmol 2006; 34: 500-504
  • 20 Micheal S, Qamar R, Akhtar F. et al. MTHFR gene C677T and A1298C polymorphisms and homocysteine levels in primary open angle and primary closed angle glaucoma. Mol Vis 2009; 15: 2268-2278
  • 21 Leibovitch I, Kurtz S, Shemesh G. et al. Hyperhomocystinemia in pseudoexfoliation glaucoma. J Glaucoma 2003; 12: 36-39
  • 22 Bleich S, Roedl J, Von Ahsen N. et al. Elevated homocysteine levels in aqueous humor of patients with pseudoexfoliation glaucoma. Am J Ophthalmol 2004; 138: 162-164
  • 23 Altintas O, Maral H, Yuksel N. et al. Homocysteine and nitric oxide levels in plasma of patients with pseudoexfoliation syndrome, pseudoexfoliation glaucoma, and primary open-angle glaucoma. Graefes Arch Clin Exp Ophthalmol 2005; 243: 677-683
  • 24 Saricaoglu MS, Karakurt A, Sengun A. et al. Plasma homocysteine levels and vitamin B status in patients with pseudoexfoliation syndrome. Saudi Med J 2006; 27: 833-837
  • 25 Cumurcu T, Sahin S, Aydin E. Serum homocysteine, vitamin B12 and folic acid levels in different types of glaucoma. BMC Ophthalmol 2006; 6: 6
  • 26 Roedl JB, Bleich S, Reulbach U. et al. Homocysteine in tear fluid of patients with pseudoexfoliation glaucoma. J Glaucoma 2007; 16: 234-239
  • 27 Roedl JB, Bleich S, Reulbach U. et al. Vitamin deficiency and hyperhomocysteinemia in pseudoexfoliation glaucoma. J Neural Transm (Vienna) 2007; 114: 571-575
  • 28 Turgut B, Kaya M, Arslan S. Levels of circulating homocysteine, vitamin B6, vitamin B12, and folate in different types of open-angle glaucoma. Clin Interv Aging 2010; 5: 133-139
  • 29 Tranchina L, Centofanti M, Oddone F. et al. Levels of plasma homocysteine in pseudoexfoliation glaucoma. Graefes Arch Clin Exp Ophthalmol 2011; 249: 443-448
  • 30 Türkcü FM, Köz OG, Yarangümeli A. et al. Plasma homocysteine, folic acid, and vitamin B12 levels in patients with pseudoexfoliation syndrome, pseudoexfoliation glaucoma, and normotensive glaucoma. Medicina (Kaunas) 2013; 49: 214-218
  • 31 Wang G, Medeiros FA, Barshop BA. et al. Total plasma homocysteine and primary open-angle glaucoma. Am J Ophthalmol 2004; 137: 401-406
  • 32 Turaçli ME, Tekeli O, Özdemir F. et al. Methylenetetrahydrofolate reductase 677 C–T and homocysteine levels in Turkish patients with pseudoexfoliation. Clin Exp Ophthalmol 2005; 33: 505-508
  • 33 Zacharaki F, Hadjigeorgiou GM, Koliakos GG. et al. Plasma homocysteine and genetic variants of homocysteine metabolism enzymes in patients from central Greece with primary open-angle glaucoma and pseudoexfoliation glaucoma. Clin Ophthalmol 2014; 8: 1819-1825
  • 34 Xu F, Zhao X, Zeng SM. et al. Homocysteine, B vitamins, methylenetetrahydrofolate reductase gene, and risk of primary open-angle glaucoma. A meta-analysis. Ophthalmology 2012; 119: 2493-2499
  • 35 Xu F, Zhang L, Li M. Plasma homocysteine, serum folic acid, serum vitamin B12, serum vitamin B6, MTHFR and risk of pseudoexfoliation glaucoma: a meta-analysis. Graefes Arch Clin Exp Ophthalmol 2012; 250: 1067-1074
  • 36 Rössler CW, Baleanu D, Reulbach U. et al. Plasma homocysteine levels in patients with normal tension glaucoma. J Glaucoma 2010; 19: 576-580
  • 37 Li J, Xu F, Zeng R. et al. Plasma homocysteine, serum folic acid, serum vitamin B12, serum vitamin B6, MTHFR, and risk of normal-tension glaucoma. J Glaucoma 2016; 25: e94
  • 38 Lee JY, Kim JM, Kim IT. et al. Relationship between plasma homocysteine level and glaucomatous retinal nerve fiber layer defect. Curr Eye Res 2017; 42: 918-923 doi:10.1080/02713683.2016.1257728
  • 39 Mandaviya PR, Stolk L, Heil SG. Homocysteine and DNA methylation: A review of animal and human literature. Mol Genet Metab 2014; 113: 243-252
  • 40 Alkozi HA, Franco R, Pintor JJ. Epigenetics in the eye: An overview of the most relevant ocular diseases. Front Genet 2017; 8: 144 doi:10.3389/fgene.2017.00144
  • 41 McDonnell F, Irnaten M, Clark AF. et al. Hypoxia-induced changes in DNA methylation alter RASAL1 and TGFbeta1 expression in human trabecular meshwork cells. PLoS One 2016; 11: e0153354 doi:10.1371/journal.pone.0153354
  • 42 Jünemann AGM, von Ahsen N, Reulbach U. et al. C677T variant in the methylentetrahydrofolate reductase gene is a genetic risk factor for primary open-angle glaucoma. Am J Ophthalmol 2005; 139: 721-723
  • 43 Fingert JH, Kwon YH, Moore PA. et al. The C677T variant in the methylenetetrahydrofolate reductase gene is not associated with disease in cohorts of pseudoexfoliation glaucoma and primary open-angle glaucoma patients from Iowa. Ophthalmic Genet 2006; 27: 39-41
  • 44 Zetterberg M, Tasa G, Palmér MS. et al. Methylenetetrahydrofolate reductase genetic polymorphisms in patients with primary open-angle glaucoma. Ophthalmic Genet 2007; 28: 47-50
  • 45 Fan BJ, Chen T, Grosskreutz C. et al. Lack of association of polymorphisms in homocysteine metabolism genes with pseudoexfoliation syndrome and glaucoma. Mol Vis 2008; 14: 2484-2491
  • 46 Kamburoglu G, Gumus K, Kadayifcilar S. et al. Plasma homocysteine, vitamin B12 and folate levels in age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 2006; 244: 565-569
  • 47 Ukinc K, Ersoz HO, Karahan C. et al. Methyltetrahydrofolate reductase C677T gene mutation and hyperhomocysteinemia as a novel risk factor for diabetic nephropathy. Endocrine 2009; 36: 255-261
  • 48 Klein BE, Knudtson MD, Tsai MY. et al. The relation of markers of inflammation and endothelial dysfunction to the prevalence and progression of diabetic retinopathy: Wisconsin epidemiologic study of diabetic retinopathy. Arch Ophthalmol 2009; 127: 1175-1182
  • 49 Coral K, Angayarkanni N, Gomathy N. et al. Homocysteine levels in the vitreous of proliferative diabetic retinopathy and rhegmatogenous retinal detachment: its modulating role on lysyl oxidase. Invest Ophthalmol Vis Sci 2009; 50: 3607-3612
  • 50 Ganapathy PS, Roon P, Moister TK. et al. Diabetes accelerates retinal neuronal cell death in a mouse model of endogenous hyperhomocysteinemia. Ophthalmol Eye Dis 2009; 1: 3-11
  • 51 Bolander-Gouaille C. PS on homocysteine as a risk factor of cardiovascular disease. Lakartidningen 2000; 97: 2786-2787
  • 52 Quigley HA. Open-angle glaucoma. N Engl J Med 1993; 328: 1097-1106
  • 53 Martí-Carvajal AJ, Solà I, Lathyris D. et al. Homocysteine-lowering interventions for preventing cardiovascular events (Review). Cochrane Database Syst Rev 2017; (08) CD006612 DOI: 10.1002/14651858.CD006612.pub5.
  • 54 Park JH, Saposnik G, Ovbiagele B. et al. Effect of B-vitamins on stroke risk among individuals with vascular disease who are not on antiplatelets: a meta-analysis. Int J Stroke 2016; 11: 206-211
  • 55 Seshadri S. Homocysteine and the risk of dementia. Clin Chem 2012; 58: 1059-1060