Semin Reprod Med 2023; 41(05): 160-171
DOI: 10.1055/s-0043-1778067
Review Article

Advanced Technologies for Studying Microbiome–Female Reproductive Tract Interactions: Organoids, Organoids-on-a-Chip, and Beyond

,
2   Department of Medical Microbiology, University Medical Centre, Utrecht, The Netherlands
,
1   Division of Female and Baby, Department of Reproductive Medicine and Gynaecology, University Medical Centre Utrecht, Utrecht, The Netherlands
› Author Affiliations
Funding This research was not supported by a specific grant or funding from the public, commercial, or nonprofit sectors. G.S.S. is supported by Merck.

Abstract

The female reproductive tract (FRT) is home to diverse microbial communities that play a pivotal role in reproductive health and disorders such as infertility, endometriosis, and cervical cancer. To understand the complex host–microbiota interactions within the FRT, models that authentically replicate the FRT's environment, including the interplay between the microbiota, mucus layer, immune system, and hormonal cycle, are key. Recent strides in organoid and microfluidic technologies are propelling research in this domain, offering insights into FRT–microbiota interactions and potential therapeutic avenues. This review delves into the current state of FRT organoid models and microbe integration techniques, evaluating their merits and challenges for specific research objectives. Emphasis is placed on innovative approaches and applications, including integrating organoids with microfluidics, and using patient-derived biobanks, as this offers potential for deeper mechanistic insights and personalized therapeutic strategies. Modeling various FRT properties in organoids is explored, from encompassing age-related epithelial features, oxygen levels, and hormonal effects to mucus layers, immune responses, and microbial interactions, highlighting their potential to transform reproductive health research and predict possible outcomes.

Authors' Contribution

G.S.S initiated the study. G.S.S. and Y.A.K. drafted the study design. Y.A.K. performed the literature search and drafted the report. G.S.S. and M.R.d.Z. revised the manuscript critically. Final manuscript was approved by all the authors.




Publication History

Article published online:
23 January 2024

© 2024. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Rizzo AE, Gordon JC, Berard AR, Burgener AD, Avril S. The female reproductive tract microbiome-implications for gynecologic cancers and personalized medicine. J Pers Med 2021; 11 (06) 546
  • 2 Liptáková A, Čurová K, Záhumenský J, Visnyaiová K, Varga I. Microbiota of female genital tract - functional overview of microbial flora from vagina to uterine tubes and placenta. Physiol Res 2022; 71 (Suppl. 01) S21-S33
  • 3 Pelzer ES, Willner D, Buttini M, Hafner LM, Theodoropoulos C, Huygens F. The fallopian tube microbiome: implications for reproductive health. Oncotarget 2018; 9 (30) 21541-21551
  • 4 Canha-Gouveia A, Pérez-Prieto I, Rodríguez CM. et al. The female upper reproductive tract harbors endogenous microbial profiles. Front Endocrinol (Lausanne) 2023; 14: 1096050
  • 5 Yao Y, Cai X, Chen C. et al. The role of microbiomes in pregnant women and offspring: research progress of recent years. Front Pharmacol 2020; 11: 643
  • 6 Wiesenfeld HC, Hillier SL, Krohn MA. et al. Lower genital tract infection and endometritis: insight into subclinical pelvic inflammatory disease. Obstet Gynecol 2002; 100 (03) 456-463
  • 7 Weström L, Joesoef R, Reynolds G, Hagdu A, Thompson SE. Pelvic inflammatory disease and fertility. A cohort study of 1,844 women with laparoscopically verified disease and 657 control women with normal laparoscopic results. Sex Transm Dis 1992; 19 (04) 185-192
  • 8 Ravel J, Moreno I, Simón C. Bacterial vaginosis and its association with infertility, endometritis, and pelvic inflammatory disease. Am J Obstet Gynecol 2021; 224 (03) 251-257
  • 9 Molina NM, Sola-Leyva A, Haahr T. et al. Analysing endometrial microbiome: methodological considerations and recommendations for good practice. Hum Reprod 2021; 36 (04) 859-879
  • 10 Dutta D, Clevers H. Organoid culture systems to study host-pathogen interactions. Curr Opin Immunol 2017; 48: 15-22
  • 11 Kessler M, Hoffmann K, Fritsche K. et al. Chronic Chlamydia infection in human organoids increases stemness and promotes age-dependent CpG methylation. Nat Commun 2019; 10 (01) 1194
  • 12 Bishop RC, Boretto M, Rutkowski MR, Vankelecom H, Derré I. Murine endometrial organoids to model Chlamydia infection. Front Cell Infect Microbiol 2020; 10: 416
  • 13 Dolat L, Valdivia RH. An endometrial organoid model of interactions between Chlamydia and epithelial and immune cells. J Cell Sci 2021; 134 (05) jcs252403
  • 14 Koster S, Gurumurthy RK, Kumar N. et al. Modelling Chlamydia and HPV co-infection in patient-derived ectocervix organoids reveals distinct cellular reprogramming. Nat Commun 2022; 13 (01) 1030
  • 15 Yu B, McCartney S, Strenk S. et al. Vaginal bacteria elicit acute inflammatory response in fallopian tube organoids. Reprod Sci [Internet]. 2023 Sep 19 [cited 2023 Nov 9]. Accessed December 19, 2023 at: https://link.springer.com/10.1007/s43032-023-01350-5
  • 16 Alzamil L, Nikolakopoulou K, Turco MY. Organoid systems to study the human female reproductive tract and pregnancy. Cell Death Differ 2021; 28 (01) 35-51
  • 17 Clevers H. Modeling development and disease with organoids. Cell 2016; 165 (07) 1586-1597
  • 18 Izadifar Z, Cotton J, Chen C. et al. Mucus production, host-microbiome interactions, hormone sensitivity, and innate immune responses modeled in human endo- and ecto-cervix chips. [ Internet ]. Bioengineering; 2023 Feb [cited 2023 Aug 19]. Accessed December 19, 2023 at: http://biorxiv.org/lookup/doi/10.1101/2023.02.22.529436
  • 19 Petrova MI, Lievens E, Malik S, Imholz N, Lebeer S. Lactobacillus species as biomarkers and agents that can promote various aspects of vaginal health. Front Physiol 2015; 6: 81 . Accessed December 19, 2023 at: http://www.frontiersin.org/Clinical_and_Translational_Physiology/10.3389/fphys.2015.00081/abstract
  • 20 Cazanave C, Manhart LE, Bébéar C. Mycoplasma genitalium, an emerging sexually transmitted pathogen. Med Mal Infect 2012; 42 (09) 381-392
  • 21 Onderdonk AB, Delaney ML, Fichorova RN. The human microbiome during bacterial vaginosis. Clin Microbiol Rev 2016; 29 (02) 223-238
  • 22 Gupta S, Kakkar V, Bhushan I. Crosstalk between vaginal microbiome and female health: a review. Microb Pathog 2019; 136: 103696
  • 23 Lin S, Zhang B, Lin Y, Lin Y, Zuo X. Dysbiosis of cervical and vaginal microbiota associated with cervical intraepithelial neoplasia. Front Cell Infect Microbiol 2022; 12: 767693
  • 24 Amegashie CP, Gilbert NM, Peipert JF, Allsworth JE, Lewis WG, Lewis AL. Relationship between Nugent score and vaginal epithelial exfoliation. PLoS One 2017; 12 (05) e0177797
  • 25 Gosmann C, Anahtar MN, Handley SA. et al. Lactobacillus-deficient cervicovaginal bacterial communities are associated with increased HIV acquisition in young South African women. Immunity 2017; 46 (01) 29-37
  • 26 Moore DE, Soules MR, Klein NA, Fujimoto VY, Agnew KJ, Eschenbach DA. Bacteria in the transfer catheter tip influence the live-birth rate after in vitro fertilization. Fertil Steril 2000; 74 (06) 1118-1124
  • 27 Mitchell CM, Haick A, Nkwopara E. et al. Colonization of the upper genital tract by vaginal bacterial species in nonpregnant women. Am J Obstet Gynecol 2015; 212 (05) 611.e1-611.e9
  • 28 Baker JM, Chase DM, Herbst-Kralovetz MM. Uterine microbiota: residents, tourists, or invaders?. Front Immunol 2018; 9: 208
  • 29 Altmäe S, Rienzi L. Endometrial microbiome: new hope, or hype?. Reprod Biomed Online 2021; 42 (06) 1051-1052
  • 30 Oberle A, Urban L, Falch-Leis S. et al. 16S rRNA long-read nanopore sequencing is feasible and reliable for endometrial microbiome analysis. Reprod Biomed Online 2021; 42 (06) 1097-1107
  • 31 Bui BN, van Hoogenhuijze N, Viveen M. et al. The endometrial microbiota of women with or without a live birth within 12 months after a first failed IVF/ICSI cycle. Sci Rep 2023; 13 (01) 3444
  • 32 Franasiak JM, Werner MD, Juneau CR. et al. Endometrial microbiome at the time of embryo transfer: next-generation sequencing of the 16S ribosomal subunit. J Assist Reprod Genet 2016; 33 (01) 129-136
  • 33 Winters AD, Romero R, Gervasi MT. et al. Does the endometrial cavity have a molecular microbial signature?. Sci Rep 2019; 9 (01) 9905
  • 34 Chen K, Cao G, Chen B. et al. Laparoscopic versus open surgery for rectal cancer: a meta-analysis of classic randomized controlled trials and high-quality nonrandomized studies in the last 5 years. Int J Surg 2017; 39: 1-10
  • 35 Leoni C, Ceci O, Manzari C. et al. Human endometrial microbiota at term of normal pregnancies. Genes (Basel) 2019; 10 (12) 971
  • 36 Moreno I, Codoñer FM, Vilella F. et al. Evidence that the endometrial microbiota has an effect on implantation success or failure. Am J Obstet Gynecol 2016; 215 (06) 684-703
  • 37 Boretto M, Cox B, Noben M. et al. Development of organoids from mouse and human endometrium showing endometrial epithelium physiology and long-term expandability. Development 2017; 144 (10) 1775-1786
  • 38 Turco MY, Gardner L, Hughes J. et al. Long-term, hormone-responsive organoid cultures of human endometrium in a chemically defined medium. Nat Cell Biol 2017; 19 (05) 568-577
  • 39 Kessler M, Hoffmann K, Brinkmann V. et al. The Notch and Wnt pathways regulate stemness and differentiation in human fallopian tube organoids. Nat Commun 2015; 6 (01) 8989
  • 40 Heidari-Khoei H, Esfandiari F, Hajari MA, Ghorbaninejad Z, Piryaei A, Baharvand H. Organoid technology in female reproductive biomedicine. Reprod Biol Endocrinol 2020; 18 (01) 64
  • 41 Michelini M, Rosellini A, Simoncini T, Papini S, Revoltella RP. A three-dimensional organotypic culture of the human uterine exocervix for studying mucosal epithelial differentiation and migrating leukocytes. Differentiation 2004; 72 (04) 138-149
  • 42 Deng H, Hillpot E, Mondal S, Khurana KK, Woodworth CD. HPV16-immortalized cells from human transformation zone and endocervix are more dysplastic than ectocervical cells in organotypic culture. Sci Rep 2018; 8 (01) 15402
  • 43 Chumduri C, Gurumurthy RK, Berger H. et al. Opposing Wnt signals regulate cervical squamocolumnar homeostasis and emergence of metaplasia. Nat Cell Biol 2021; 23 (02) 184-197
  • 44 Nanki Y, Chiyoda T, Hirasawa A. et al. Patient-derived ovarian cancer organoids capture the genomic profiles of primary tumours applicable for drug sensitivity and resistance testing. Sci Rep 2020; 10 (01) 12581
  • 45 Kopper O, de Witte CJ, Lõhmussaar K. et al. An organoid platform for ovarian cancer captures intra- and interpatient heterogeneity. Nat Med 2019; 25 (05) 838-849
  • 46 Pierson Smela MD, Kramme CC, Fortuna PRJ. et al. Directed differentiation of human iPSCs to functional ovarian granulosa-like cells via transcription factor overexpression. eLife 2023; 12: e83291
  • 47 Ali A, Syed SM, Jamaluddin MFB, Colino-Sanguino Y, Gallego-Ortega D, Tanwar PS. Cell lineage tracing identifies hormone-regulated and Wnt-responsive vaginal epithelial stem cells. Cell Rep 2020; 30 (05) 1463-1477.e7
  • 48 Turco MY, Gardner L, Kay RG. et al. Trophoblast organoids as a model for maternal-fetal interactions during human placentation. Nature 2018; 564 (7735) 263-267
  • 49 Han Y, Liu Z, Chen T. Role of vaginal microbiota dysbiosis in gynecological diseases and the potential interventions. Front Microbiol 2021; 12: 643422
  • 50 Goodfellow L, Verwijs MC, Care A. et al. Vaginal bacterial load in the second trimester is associated with early preterm birth recurrence: a nested case-control study. BJOG 2021; 128 (13) 2061-2072
  • 51 Han X, Mslati MA, Davies E, Chen Y, Allaire JM, Vallance BA. Creating a more perfect union: modeling intestinal bacteria-epithelial interactions using organoids. Cell Mol Gastroenterol Hepatol 2021; 12 (02) 769-782
  • 52 Chen Y, Cao K, Liu H. et al. Heat killed Salmonella typhimurium protects intestine against radiation injury through Wnt signaling pathway. J Oncol 2021; 2021: 5550956
  • 53 Fischer S, Ückert AK, Landenberger M. et al. Human peptide α-defensin-1 interferes with Clostridioides difficile toxins TcdA, TcdB, and CDT. FASEB J 2020; 34 (05) 6244-6261
  • 54 Naito T, Mulet C, De Castro C. et al. Lipopolysaccharide from crypt-specific core microbiota modulates the colonic epithelial proliferation-to-differentiation balance. MBio 2017; 8 (05) e01680-e17
  • 55 Poletti M, Arnauts K, Ferrante M, Korcsmaros T. Organoid-based models to study the role of host-microbiota interactions in IBD. J Crohn's Colitis 2021; 15 (07) 1222-1235
  • 56 Yokoi Y, Nakamura K, Yoneda T. et al. Paneth cell granule dynamics on secretory responses to bacterial stimuli in enteroids. Sci Rep 2019; 9 (01) 2710
  • 57 Williamson IA, Arnold JW, Samsa LA. et al. A high-throughput organoid microinjection platform to study gastrointestinal microbiota and luminal physiology. Cell Mol Gastroenterol Hepatol 2018; 6 (03) 301-319
  • 58 Pleguezuelos-Manzano C, Puschhof J, Rosendahl Huber A. et al; Genomics England Research Consortium. Mutational signature in colorectal cancer caused by genotoxic pks+ E. coli. Nature 2020; 580 (7802) 269-273
  • 59 Ginga NJ, Slyman R, Kim GA. et al. Perfusion system for modification of luminal contents of human intestinal organoids and real time imaging analysis of microbial populations. Micromachines (Basel) 2022; 13 (01) 131
  • 60 Puschhof J, Pleguezuelos-Manzano C, Martinez-Silgado A. et al. Intestinal organoid cocultures with microbes. Nat Protoc 2021; 16 (10) 4633-4649
  • 61 Bartfeld S, Bayram T, van de Wetering M. et al. In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection. Gastroenterology 2015; 148 (01) 126-136.e6
  • 62 McCracken KW, Catá EM, Crawford CM. et al. Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature 2014; 516 (7531) 400-404
  • 63 Leslie JL, Huang S, Opp JS. et al. Persistence and toxin production by Clostridium difficile within human intestinal organoids result in disruption of epithelial paracellular barrier function. Infect Immun 2015; 83 (01) 138-145
  • 64 Dolat L, Carpenter VK, Chen YS. et al. Chlamydia repurposes the actin-binding protein EPS8 to disassemble epithelial tight junctions and promote infection. Cell Host Microbe 2022; 30 (12) 1685-1700.e10
  • 65 Co JY, Margalef-Català M, Monack DM, Amieva MR. Controlling the polarity of human gastrointestinal organoids to investigate epithelial biology and infectious diseases. Nat Protoc 2021; 16 (11) 5171-5192
  • 66 Co JY, Margalef-Català M, Li X. et al. Controlling epithelial polarity: a human enteroid model for host-pathogen interactions. Cell Rep 2019; 26 (09) 2509-2520.e4
  • 67 Rajan A, Robertson MJ, Carter HE. et al. Enteroaggregative E. coli adherence to human heparan sulfate proteoglycans drives segment and host specific responses to infection. PLoS Pathog 2020; 16 (09) e1008851
  • 68 Ahmad V, Yeddula SGR, Telugu BP, Spencer TE, Kelleher AM. Development of polarity-reversed endometrial epithelial organoids. [ Internet ]. Cell Biology; 2023 . Accessed December 19, 2023 at: http://biorxiv.org/lookup/doi/10.1101/2023.08.18.553918
  • 69 Foulke-Abel J, In J, Kovbasnjuk O. et al. Human enteroids as an ex-vivo model of host-pathogen interactions in the gastrointestinal tract. Exp Biol Med (Maywood) 2014; 239 (09) 1124-1134
  • 70 Ettayebi K, Crawford SE, Murakami K. et al. Replication of human noroviruses in stem cell-derived human enteroids. Science 2016; 353 (6306) 1387-1393
  • 71 VanDussen KL, Marinshaw JM, Shaikh N. et al. Development of an enhanced human gastrointestinal epithelial culture system to facilitate patient-based assays. Gut 2015; 64 (06) 911-920
  • 72 In J, Foulke-Abel J, Zachos NC. et al. Enterohemorrhagic Escherichia coli reduce mucus and intermicrovillar bridges in human stem cell-derived colonoids. Cell Mol Gastroenterol Hepatol 2016; 2 (01) 48-62.e3
  • 73 Roodsant T, Navis M, Aknouch I. et al. A human 2D primary organoid-derived epithelial monolayer model to study host-pathogen interaction in the small intestine. Front Cell Infect Microbiol 2020; 10: 272
  • 74 Kozuka K, He Y, Koo-McCoy S. et al. Development and characterization of a human and mouse intestinal epithelial cell monolayer platform. Stem Cell Reports 2017; 9 (06) 1976-1990
  • 75 Wang Y, Chiang IL, Ohara TE. et al. Long-term culture captures injury-repair cycles of colonic stem cells. Cell 2019; 179 (05) 1144-1159.e15
  • 76 DiMarco RL, Su J, Yan KS, Dewi R, Kuo CJ, Heilshorn SC. Engineering of three-dimensional microenvironments to promote contractile behavior in primary intestinal organoids. Integr Biol 2014; 6 (02) 127-142
  • 77 Zhu Y, Yang Y, Guo J. et al. Ex vivo 2D and 3D HSV-2 infection model using human normal vaginal epithelial cells. Oncotarget 2017; 8 (09) 15267-15282
  • 78 Wang Y, Qin J. Advances in human organoids-on-chips in biomedical research. Life Med 2023; 2 (01) lnad007
  • 79 Nie J, Gao Q, Wang Y. et al. Vessel-on-a-chip with hydrogel-based microfluidics. Small 2018; 14 (45) e1802368
  • 80 Bhatia SN, Ingber DE. Microfluidic organs-on-chips. Nat Biotechnol 2014; 32 (08) 760-772
  • 81 Huh D, Torisawa YS, Hamilton GA, Kim HJ, Ingber DE. Microengineered physiological biomimicry: organs-on-chips. Lab Chip 2012; 12 (12) 2156-2164
  • 82 Rifes P, Isaksson M, Rathore GS. et al. Modeling neural tube development by differentiation of human embryonic stem cells in a microfluidic WNT gradient. Nat Biotechnol 2020; 38 (11) 1265-1273
  • 83 Karzbrun E, Kshirsagar A, Cohen SR, Hanna JH, Reiner O. Human brain organoids on a chip reveal the physics of folding. Nat Phys 2018; 14 (05) 515-522
  • 84 Homan KA, Gupta N, Kroll KT. et al. Flow-enhanced vascularization and maturation of kidney organoids in vitro. Nat Methods 2019; 16 (03) 255-262
  • 85 Zhang YS, Aleman J, Shin SR. et al. Multisensor-integrated organs-on-chips platform for automated and continual in situ monitoring of organoid behaviors. Proc Natl Acad Sci U S A 2017; 114 (12) E2293-E2302
  • 86 Schuster B, Junkin M, Kashaf SS. et al. Automated microfluidic platform for dynamic and combinatorial drug screening of tumor organoids. Nat Commun 2020; 11 (01) 5271
  • 87 Kim HJ, Li H, Collins JJ, Ingber DE. Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. Proc Natl Acad Sci U S A 2016; 113 (01) E7-E15
  • 88 Trujillo-de Santiago G, Lobo-Zegers MJ, Montes-Fonseca SL, Zhang YS, Alvarez MM. Gut-microbiota-on-a-chip: an enabling field for physiological research. Microphysiol Syst 2018; 2: 7
  • 89 Mahajan G, Doherty E, To T. et al. Vaginal microbiome-host interactions modeled in a human vagina-on-a-chip. Microbiome 2022; 10 (01) 201
  • 90 Ng KYB, Mingels R, Morgan H, Macklon N, Cheong Y. In vivo oxygen, temperature and pH dynamics in the female reproductive tract and their importance in human conception: a systematic review. Hum Reprod Update 2018; 24 (01) 15-34
  • 91 de Oliveira NS, de Lima ABF, de Brito JCR, Sarmento ACA, Gonçalves AKS, Eleutério Jr J. Postmenopausal vaginal microbiome and microbiota. Front Reprod Health 2022; 3: 780931
  • 92 Zhang Y, Chen R, Zhang D, Qi S, Liu Y. Metabolite interactions between host and microbiota during health and disease: Which feeds the other?. Biomed Pharmacother 2023; 160: 114295
  • 93 Sozzi E, Kajtez J, Bruzelius A. et al. Silk scaffolding drives self-assembly of functional and mature human brain organoids. Front Cell Dev Biol 2022; 10: 1023279
  • 94 Shah P, Fritz JV, Glaab E. et al. A microfluidics-based in vitro model of the gastrointestinal human-microbe interface. Nat Commun 2016; 7 (01) 11535
  • 95 Punzón-Jiménez P, Labarta E. The impact of the female genital tract microbiome in women health and reproduction: a review. J Assist Reprod Genet 2021; 38 (10) 2519-2541
  • 96 Hibaoui Y, Feki A. Organoid models of human endometrial development and disease. Front Cell Dev Biol 2020; 8: 84
  • 97 Xiao S, Coppeta JR, Rogers HB. et al. A microfluidic culture model of the human reproductive tract and 28-day menstrual cycle. Nat Commun 2017; 8 (01) 14584
  • 98 Izadifar Z, Sontheimer-Phelps A, Lubamba BA. et al. Modeling mucus physiology and pathophysiology in human organs-on-chips. Adv Drug Deliv Rev 2022; 191: 114542
  • 99 Elstein M. Cervical mucus: its physiological role and clinical significance. In: Chantler EN, Elder JB, Elstein M. eds. Mucus in Health and Disease—II [Internet]. Boston, MA: Springer; 1982 [cited 2023 Sep 19]. pp. 301–318. (Advances in Experimental Medicine and Biology; vol. 144). Accessed December 19, 2023 at: http://link.springer.com/10.1007/978-1-4615-9254-9_50
  • 100 Lacroix G, Gouyer V, Gottrand F, Desseyn JL. The cervicovaginal mucus barrier. Int J Mol Sci 2020; 21 (21) 8266
  • 101 Mohanty T, Doke PP, Khuroo SR. Effect of bacterial vaginosis on preterm birth: a meta-analysis. Arch Gynecol Obstet 2023; 308 (04) 1247-1255
  • 102 Cohen CR, Lingappa JR, Baeten JM. et al. Bacterial vaginosis associated with increased risk of female-to-male HIV-1 transmission: a prospective cohort analysis among African couples. PLoS Med 2012; 9 (06) e1001251
  • 103 Arslan SY, Yu Y, Burdette JE. et al. Novel three dimensional human endocervix cultures respond to 28-day hormone treatment. Endocrinology 2015; 156 (04) 1602-1609
  • 104 Zhang F, Dai J, Chen T. Role of Lactobacillus in female infertility via modulating sperm agglutination and immobilization. Front Cell Infect Microbiol 2021; 10: 620529
  • 105 Venneri MA, Franceschini E, Sciarra F, Rosato E, D'Ettorre G, Lenzi A. Human genital tracts microbiota: dysbiosis crucial for infertility. J Endocrinol Invest 2022; 45 (06) 1151-1160
  • 106 Puca JF, Hoyne G. Microbial dysbiosis and disease pathogenesis of endometriosis, could there be a link? Medical-Research [Internet]. 2017 [cited 2023 Sep 19];01(01). Accessed December 19, 2023 at: http://www.alliedacademies.org/articles/microbial-dysbiosis-and-disease-pathogenesis-of-endometriosis-could-therebe-a-link-6652.html
  • 107 Jia Z, Guo Z, Yang CT, Prestidge C, Thierry B. “Mucus-on-chip”: a new tool to study the dynamic penetration of nanoparticulate drug carriers into mucus. Int J Pharm 2021; 598: 120391
  • 108 Martyn F, McAuliffe FM, Wingfield M. The role of the cervix in fertility: is it time for a reappraisal?. Hum Reprod 2014; 29 (10) 2092-2098
  • 109 Kutteh WH, Moldoveanu Z, Mestecky J. Mucosal immunity in the female reproductive tract: correlation of immunoglobulins, cytokines, and reproductive hormones in human cervical mucus around the time of ovulation. AIDS Res Hum Retroviruses 1998; 14 (Suppl. 01) S51-S55
  • 110 Kutteh WH, Prince SJ, Hammond KR, Kutteh CC, Mestecky J. Variations in immunoglobulins and IgA subclasses of human uterine cervical secretions around the time of ovulation. Clin Exp Immunol 1996; 104 (03) 538-542
  • 111 Monin L, Whettlock EM, Male V. Immune responses in the human female reproductive tract. Immunology 2020; 160 (02) 106-115
  • 112 Li H, Zang Y, Wang C. et al. The interaction between microorganisms, metabolites, and immune system in the female genital tract microenvironment. Front Cell Infect Microbiol 2020; 10: 609488
  • 113 Kushnir VA, Smith GD, Adashi EY. The future of IVF: the new normal in human reproduction. Reprod Sci 2022; 29 (03) 849-856
  • 114 Li WX, Liang GT, Yan W. et al. Artificial uterus on a microfluidic chip. Chin J Anal Chem 2013; 41 (04) 467-472
  • 115 Gnecco JS, Pensabene V, Li DJ. et al. Compartmentalized culture of perivascular stroma and endothelial cells in a microfluidic model of the human endometrium. Ann Biomed Eng 2017; 45 (07) 1758-1769
  • 116 Jang KJ, Otieno MA, Ronxhi J. et al. Reproducing human and cross-species drug toxicities using a Liver-Chip. Sci Transl Med 2019; 11 (517) eaax5516