Subscribe to RSS
DOI: 10.1055/s-0043-1777802
Blood Rheology and Hemodynamics[*]
Abstract
Seminars in Thrombosis and Hemostasis (STH) celebrates 50 years of publishing in 2024. To celebrate this landmark event, STH is republishing some archival material. This article represents the most highly cited paper ever published in STH. The original abstract follows.
Blood is a two-phase suspension of formed elements (i.e., red blood cells [RBCs], white blood cells [WBCs], platelets) suspended in an aqueous solution of organic molecules, proteins, and salts called plasma. The apparent viscosity of blood depends on the existing shear forces (i.e., blood behaves as a non-Newtonian fluid) and is determined by hematocrit, plasma viscosity, RBC aggregation, and the mechanical properties of RBCs. RBCs are highly deformable, and this physical property significantly contributes to aiding blood flow both under bulk flow conditions and in the microcirculation. The tendency of RBCs to undergo reversible aggregation is an important determinant of apparent viscosity because the size of RBC aggregates is inversely proportional to the magnitude of shear forces; the aggregates are dispersed with increasing shear forces, then reform under low-flow or static conditions. RBC aggregation also affects the in vivo fluidity of blood, especially in the low-shear regions of the circulatory system. Blood rheology has been reported to be altered in various physiopathological processes: (1) Alterations of hematocrit significantly contribute to hemorheological variations in diseases and in certain extreme physiological conditions; (2) RBC deformability is sensitive to local and general homeostasis, with RBC deformability affected by alterations of the properties and associations of membrane skeletal proteins, the ratio of RBC membrane surface area to cell volume, cell morphology, and cytoplasmic viscosity. Such alterations may result from genetic disorders or may be induced by such factors as abnormal local tissue metabolism, oxidant stress, and activated leukocytes; and (3) RBC aggregation is mainly determined by plasma protein composition and surface properties of RBCs, with increased plasma concentrations of acute phase reactants in inflammatory disorders a common cause of increased RBC aggregation. In addition, RBC aggregation tendency can be modified by alterations of RBC surface properties because of RBC in vivo aging, oxygen-free radicals, or proteolytic enzymes. Impairment of blood fluidity may significantly affect tissue perfusion and result in functional deteriorations, especially if disease processes also disturb vascular properties.
Keywords
hemorheology - hemodynamics - viscosity - erythrocyte deformability - erythrocyte aggregation - tissue perfusion - blood flow* This article is a republished version of: Baskurt OK, Meiselman HJ. Blood Rheology and Hemodynamics. Semin Thromb Hemost 2003;29(05):435–450.
Publication History
Article published online:
20 December 2023
© 2023. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Bujalkova M, Straka S, Jureckova A. Hippocrates' humoral pathology in nowaday's reflections. Bratisl Lek Listy 2001; 102 (10) 489-492
- 2 Riddle JM. Theory and practice in medieval medicine. Viator 1974; 5: 157-184
- 3 Schultz SG. William Harvey and the circulation of the blood: the birth of a scientific revolution and modern physiology. News Physiol Sci 2002; 17: 175-180
- 4 Hull G. The influence of Herman Boerhaave. J R Soc Med 1997; 90 (09) 512-514
- 5 Copley AL. Robin Fahraeus—the scientist and the person. Clin Hemorheol 1989; 9: 395-433
- 6 Bauer A. Historia magistra pathologiae. Wurzbg Medizinhist Mitt 1993; 11: 59-76
- 7 Goldsmith HL, Cokelet GR, Gaehtgens P. Robin Fåhraeus: evolution of his concepts in cardiovascular physiology. Am J Physiol 1989; 257 (3, Pt 2): H1005-H1015
- 8 Copley AL. Fluid mechanics and biorheology. Biorheology 1990; 27 (01) 3-19
- 9 Errill EW. Rheology of blood. Physiol Rev 1969; 49 (04) 863-888
- 10 Matrai A, Whittington RB, Skalak R. Biophysics. In: Chien S, Dormandy J, Ernst E, Matrai A. eds. Clinical Hemorheology. Dordrecht: Martinus Nijhoff; 1987: 9-71
- 11 Thurston GB. Viscoelasticity of human blood. Biophys J 1972; 12 (09) 1205-1217
- 12 Lowe GDO, Barbenel JC. Plasma and blood viscosity. In: Lowe GDO. ed. Clinical Blood Rheology. Vol 1. Boca Raton, FL: CRC Press; 1988: 11-44
- 13 Ross J, Schmid-Schönbein G. Dynamics of the peripheral circulation. In: West JB. ed. Physiological Basis of Medical Practice. Baltimore, MD: Williams & Wilkins; 1990: 138-158
- 14 Rampling MW. Red cell aggregation and yield stress. In: Lowe GDO. ed. Clinical Blood Rheology. Boca Raton, FL: CRC Press; 1988: 11-44
- 15 Chien S. Biophysical behavior of red cells in suspension. In: Surgenor DM. ed. Red Blood Cell. Vol. 3. New York: Academic Press; 1975: 1031-1133
- 16 Rand PW, Lacombe E, Hunt HE, Austin WH. Viscosity of normal human blood under normothermic and hypothermic conditions. J Appl Physiol 1964; 19: 117-122
- 17 Somer T, Meiselman HJ. Disorders of blood viscosity. Ann Med 1993; 25 (01) 31-39
- 18 Lowe GDO. Rheology of paraproteinemias and leukemias. In: Lowe GDO. ed. Clinical Blood Rheology. Vol 2. Boca Raton, FL: CRC Press; 1988: 67-88
- 19 Cokelet GR. Rheology and tube flow of blood. In: Skalak R, Chien S. eds. Handbook of Engineering. New York: McGraw-Hill; 1987: 14.1-14.17
- 20 Schmid-Schönbein H, Wells RE, Goldstone J. Fluid drop-like behaviour of erythrocytes–disturbance in pathology and its quantification. Biorheology 1971; 7 (04) 227-234
- 21 Wells R, Schmid-Schönbein H. Red cell deformation and fluidity of concentrated cell suspensions. J Appl Physiol 1969; 27 (02) 213-217
- 22 Chien S, Sung LA. Physicochemical basis and clinical implications of red cell aggregation. Clin Hemorheol 1987; 7: 71-91
- 23 Chien S. Red cell deformability and its relevance to blood flow. Annu Rev Physiol 1987; 49: 177-192
- 24 Baskurt OK, Meiselman HJ. Cellular determinants of low-shear blood viscosity. Biorheology 1997; 34 (03) 235-247
- 25 Lipowsky HH, Cram LE, Justice W, Eppihimer MJ. Effect of erythrocyte deformability on in vivo red cell transit time and hematocrit and their correlation with in vitro filterability. Microvasc Res 1993; 46 (01) 43-64
- 26 McHedlishvili G, Varazashvili M, Gobejishvili L. Local RBC aggregation disturbing blood fluidity and causing stasis in microvessels. Clin Hemorheol Microcirc 2002; 26 (02) 99-106
- 27 Eppihimer MJ, Lipowsky HH. Effects of leukocyte-capillary plugging on the resistance to flow in the microvasculature of cremaster muscle for normal and activated leukocytes. Microvasc Res 1996; 51 (02) 187-201
- 28 Mohandas N, Chasis JA. Red blood cell deformability, membrane material properties and shape: regulation by transmembrane, skeletal and cytosolic proteins and lipids. Semin Hematol 1993; 30 (03) 171-192
- 29 Mohandas N, Chasis JA, Shohet SB. The influence of membrane skeleton on red cell deformability, membrane material properties, and shape. Semin Hematol 1983; 20 (03) 225-242
- 30 Evans EA, La Celle PL. Intrinsic material properties of the erythrocyte membrane indicated by mechanical analysis of deformation. Blood 1975; 45 (01) 29-43
- 31 Chasis JA, Shohet SB. Red cell biochemical anatomy and membrane properties. Annu Rev Physiol 1987; 49: 237-248
- 32 Hochmuth RM, Waugh RE. Erythrocyte membrane elasticity and viscosity. Annu Rev Physiol 1987; 49: 209-219
- 33 Lux SE. Dissecting the red cell membrane skeleton. Nature 1979; 281 (5731) 426-429
- 34 Mohandas N, Shohet SB. The role of membrane-associated enzymes in regulation of erythrocyte shape and deformability. Clin Haematol 1981; 10 (01) 223-237
- 35 Chien S. Principles and techniques for assessing erythrocyte deformability. Blood Cells 1977; 3: 71-95
- 36 Baskurt OK, Fisher TC, Meiselman HJ. Sensitivity of the cell transit analyzer (CTA) to alterations of red blood cell deformability: role of cell size-pore size ratio and sample preparation. Clin Hemorheol 1996; 16: 753-765
- 37 Hardeman MR, Goedhart PT, Dobbe JGG, Lettinga KP. Laser assisted optical rotational cell analyzer (LORCA): a new instrument for measurement of various structural hemorheological parameters. Clin Hemorheol Microcirc 1994; 14: 605-618
- 38 Meiselman HJ. Red blood cell role in RBC aggregation: 1963–1993 and beyond. Clin Hemorheol 1993; 13: 575-592
- 39 Nash GB, Wenby RB, Meiselman HJ. Influence of cellular factors on red cell aggregation. Clin Hemorheol 1987; 7: 93-108
- 40 Armstrong JK, Meiselman HJ, Wenby RB, Fisher TC. Modulation of red blood cell aggregation and blood viscosity by the covalent attachment of Pluronic copolymers. Biorheology 2001; 38 (2-3): 239-247
- 41 Baskurt OK, Temiz A, Meiselman HJ. Effect of superoxide anions on red blood cell rheologic properties. Free Radic Biol Med 1998; 24 (01) 102-110
- 42 Baskurt OK, Meiselman HJ. Activated polymorphonuclear leukocytes affect red blood cell aggregability. J Leukoc Biol 1998; 63 (01) 89-93
- 43 Baskurt OK, Temiz A, Meiselman HJ. Red blood cell aggregation in experimental sepsis. J Lab Clin Med 1997; 130 (02) 183-190
- 44 Baskurt OK, Farley RA, Meiselman HJ. Erythrocyte aggregation tendency and cellular properties in horse, human, and rat: a comparative study. Am J Physiol 1997; 273 (06) H2604-H2612
- 45 Başkurt OK, Bor-Küçükatay M, Yalçin O, Meiselman HJ, Armstrong JK. Standard aggregating media to test the “aggregability” of rat red blood cells. Clin Hemorheol Microcirc 2000; 22 (02) 161-166
- 46 Kobuchi Y, Ito T, Ogiwara A. A model for rouleaux pattern formation of red blood cells. J Theor Biol 1988; 130 (02) 129-145
- 47 Brooks DE, Greig RG, Janzen J. Mechanisms of erythrocyte aggregation. In: Cokelet GR, Meiselman HJ, Brooks DE. eds. Mechanisms of Erythrocyte Aggregation in Erythrocyte Mechanics and Blood Flow. New York: A.R. Liss; 1980: 119-140
- 48 Chien S, Jan K. Ultrastructural basis of the mechanism of rouleaux formation. Microvasc Res 1973; 5 (02) 155-166
- 49 van Oss CJ, Arnold K, Coakley WT. Depletion flocculation and depletion stabilization of erythrocytes. Cell Biophys 1990; 17 (01) 1-10
- 50 Evans E, Berk D, Leung A, Mohandas N. Detachment of agglutinin-bonded red blood cells. II. Mechanical energies to separate large contact areas. Biophys J 1991; 59 (04) 849-860
- 51 Baskurt OK, Tugral E, Neu B, Meiselman HJ. Particle electrophoresis as a tool to understand the aggregation behavior of red blood cells. Electrophoresis 2002; 23 (13) 2103-2109
- 52 Neu B, Meiselman HJ. Depletion-mediated red blood cell aggregation in polymer solutions. Biophys J 2002; 83 (05) 2482-2490
- 53 Bäumler H, Donath E, Krabi A, Knippel W, Budde A, Kiesewetter H. Electrophoresis of human red blood cells and platelets. Evidence for depletion of dextran. Biorheology 1996; 33 (4-5): 333-351
- 54 Bäumler H, Neu B, Donath E, Kiesewetter H. Basic phenomena of red blood cell rouleaux formation. Biorheology 1999; 36 (5-6): 439-442
- 55 Bauersachs RM, Wenby RB, Meiselman HJ. Determination of specific red blood cell aggregation indices via an automated system. Clin Hemorheol 1989; 9: 1-25
- 56 Baskurt OK, Meiselman HJ, Kayar E. Measurement of red blood cell aggregation in a “plate-plate” shearing system by analysis of light transmission. Clin Hemorheol Microcirc 1998; 19 (04) 307-314
- 57 Firrell JC, Lipowsky HH. Leukocyte margination and deformation in mesenteric venules of rat. Am J Physiol 1989; 256 (6, Pt 2): H1667-H1674
- 58 Buttrum SM, Nash GB, Hatton R. Changes in neutrophil rheology after acute ischemia and reperfusion in the rat hindlimb. J Lab Clin Med 1996; 128 (05) 506-514
- 59 Buttrum SM, Drost EM, MacNee W. et al. Rheological response of neutrophils to different types of stimulation. J Appl Physiol 1994; 77 (04) 1801-1810
- 60 Nash GB, Abbitt KB, Tate K, Jetha KA, Egginton S. Changes in the mechanical and adhesive behaviour of human neutrophils on cooling in vitro. Pflugers Arch 2001; 442 (05) 762-770
- 61 Isbister JP. The stress polycythaemia syndromes and their haemorheological significance. Clin Hemorheol 1987; 7: 159-179
- 62 Boucher JH. The equine spleen: source of dangerous red blood cells. J Equine Vet Sci 1987; 7: 140-142
- 63 Baskurt OK, Levi E, Caglayan S. et al. The role of hemorheologic factors in the coronary circulation. Clin Hemorheol 1991; 11: 121-127
- 64 Fan F-C, Chen RYZ, Schuessler GB, Chien S. Effects of hematocrit variations on regional hemodynamics and oxygen transport in the dog. Am J Physiol 1980; 238 (04) H545--H22
- 65 Rendell M, Luu T, Quinlan E. et al. Red cell filterability determined using the cell transit time analyzer (CTTA): effects of ATP depletion and changes in calcium concentration. Biochim Biophys Acta 1992; 1133 (03) 293-300
- 66 Kayar E, Mat F, Meiselman HJ, Baskurt OK. Red blood cell rheological alterations in a rat model of ischemia-reperfusion injury. Biorheology 2001; 38 (5-6): 405-414
- 67 Mohandas N, Evans E. Mechanical properties of the red cell membrane in relation to molecular structure and genetic defects. Annu Rev Biophys Biomol Struct 1994; 23: 787-818
- 68 Shiga T, Maeda N, Kon K. Erythrocyte rheology. Crit Rev Oncol Hematol 1990; 10 (01) 9-48
- 69 Friederichs E, Meiselman HJ. Effects of calcium permeabilization on RBC rheologic behavior. Biorheology 1994; 31 (02) 207-215
- 70 Turchetti V, Leoncini F, De Matteis C, Trabalzini L, Guerrini M, Forconi S. Evaluation of erythrocyte morphology as deformability index in patients suffering from vascular diseases, with or without diabetes mellitus: correlation with blood viscosity and intra-erythrocytic calcium. Clin Hemorheol Microcirc 1998; 18 (2-3): 141-149
- 71 Brun JF. Hormones, metabolism and body composition as major determinants of blood rheology: potential pathophysiological meaning. Clin Hemorheol Microcirc 2002; 26 (02) 63-79
- 72 Mark M, Walter R, Harris LG, Reinhart WH. Influence of parathyroid hormone, calcitonin, 1,25(OH)2 cholecalciferol, calcium, and the calcium ionophore A23187 on erythrocyte morphology and blood viscosity. J Lab Clin Med 2000; 135 (04) 347-352
- 73 Başkurt OK, Levi E, Temizer A. et al. In vitro effects of thyroxine on the mechanical properties of erythrocytes. Life Sci 1990; 46 (20) 1471-1477
- 74 Cicco G, Carbonara MC, Stingi GD, Pirrelli A. Cytosolic calcium and hemorheological patterns during arterial hypertension. Clin Hemorheol Microcirc 2001; 24 (01) 25-31
- 75 Kavanagh BD, Coffey BE, Needham D, Hochmuth RM, Dewhirst MW. The effect of flunarizine on erythrocyte suspension viscosity under conditions of extreme hypoxia, low pH, and lactate treatment. Br J Cancer 1993; 67 (04) 734-741
- 76 Takakuwa Y, Ishibashi T, Mohandas N. Regulation of red cell membrane deformability and stability by skeletal protein network. Biorheology 1990; 27 (3-4): 357-365
- 77 Takakuwa Y. Protein 4.1, a multifunctional protein of the erythrocyte membrane skeleton: structure and functions in erythrocytes and nonerythroid cells. Int J Hematol 2000; 72 (03) 298-309
- 78 Friederichs E, Farley RA, Meiselman HJ. Influence of calcium permeabilization and membrane-attached hemoglobin on erythrocyte deformability. Am J Hematol 1992; 41 (03) 170-177
- 79 Baskurt OK. Activated granulocyte induced alterations in red blood cells and protection by antioxidant enzymes. Clin Hemorheol 1996; 16: 49-56
- 80 Yalcin O, Erman A, Muratli S, Bor-Küçükatay M, Baskurt OK. Time course of hemorheological alterations after heavy anaerobic exercise in untrained human subjects. J Appl Physiol 2003; 94 (03) 997-1002
- 81 Baskurt OK, Bor-Küçükatay M, Yalcin O, Meiselman HJ. Aggregation behavior and electrophoretic mobility of red blood cells in various mammalian species. Biorheology 2000; 37 (5-6): 417-428
- 82 Bor-Küçükatay M, Yalcin O, Meiselman HJ, Baskurt OK. Erythropoietin-induced rheological changes of rat erythrocytes. Br J Haematol 2000; 110 (01) 82-88
- 83 Granger DN. Role of xanthine oxidase and granulocytes in ischemia-reperfusion injury. Am J Physiol 1988; 255 (6, Pt 2): H1269-H1275
- 84 Welbourn CRB, Goldman G, Paterson IS, Valeri CR, Shepro D, Hechtman HB. Pathophysiology of ischaemia reperfusion injury: central role of the neutrophil. Br J Surg 1991; 78 (06) 651-655
- 85 Baskurt OK, Yavuzer S. Some hematological effects of oxidants. In: Nriagu JO, Simmons MS. eds. Environmental Oxidants. New York:: John Wiley;; 1994: 405-423
- 86 Weiss SJ. The role of superoxide in the destruction of erythrocyte targets by human neutrophils. J Biol Chem 1980; 255 (20) 9912-9917
- 87 Snyder LM, Fortier NL, Trainor J. et al. Effect of hydrogen peroxide exposure on normal human erythrocyte deformability, morphology, surface characteristics, and spectrin-hemoglobin cross-linking. J Clin Invest 1985; 76 (05) 1971-1977
- 88 Uyesaka N, Hasegawa S, Ishioka N, Ishioka R, Shio H, Schechter AN. Effects of superoxide anions on red cell deformability and membrane proteins. Biorheology 1992; 29 (2-3): 217-229
- 89 Ali H, Haribabu B, Richardson RM, Snyderman R. Mechanisms of inflammation and leukocyte activation. Med Clin North Am 1997; 81 (01) 1-28
- 90 Downey GP, Fukushima T, Fialkow L, Waddell TK. Intracellular signaling in neutrophil priming and activation. Semin Cell Biol 1995; 6 (06) 345-356
- 91 Claster S, Chiu DTY, Quintanilha A, Lubin B. Neutrophils mediate lipid peroxidation in human red cells. Blood 1984; 64 (05) 1079-1084
- 92 Cokelet GR, Goldsmith HL. Decreased hydrodynamic resistance in the two-phase flow of blood through small vertical tubes at low flow rates. Circ Res 1991; 68 (01) 1-17
- 93 Fahraeus R. The influence of the rouleau formation of the erythrocytes on the rheology of the blood. Acta Med Scand 1958; 161 (02) 151-165
- 94 McKay CB, Linderkamp O, Meiselman HJ. Fåhraeus and Fåhreaus-Lindqvist effects for neonatal and adult red blood cell suspensions. Pediatr Res 1993; 34 (04) 538-543
- 95 Murata T. Effects of sedimentation of small red blood cell aggregates on blood flow in narrow horizontal tubes. Biorheology 1996; 33 (03) 267-283
- 96 Reinke W, Gaehtgens P, Johnson PC. Blood viscosity in small tubes: effect of shear rate, aggregation, and sedimentation. Am J Physiol 1987; 253 (3, Pt 2): H540-H547
- 97 Alonso C, Pries AR, Gaehtgens P. Time-dependent rheological behavior of blood at low shear in narrow vertical tubes. Am J Physiol 1993; 265 (2, Pt 2): H553-H561
- 98 McKay CB, Meiselman HJ. Osmolality-mediated Fahraeus and Fahraeus-Lindqvist effects for human RBC suspensions. Am J Physiol 1988; 254 (2, Pt 2): H238-H249
- 99 Hakim TS. Erythrocyte deformability and segmental pulmonary vascular resistance: osmolarity and heat treatment. J Appl Physiol 1988; 65 (04) 1634-1641
- 100 Parthasarathi K, Lipowsky HH. Capillary recruitment in response to tissue hypoxia and its dependence on red blood cell deformability. Am J Physiol 1999; 277 (06) H2145-H2157
- 101 Secomb TW, Hsu R. Resistance to blood flow in nonuniform capillaries. Microcirculation 1997; 4 (04) 421-427
- 102 Schmid-Schönbein H. Fluid dynamics and hemorheology in vivo: the interactions of hemodynamic parameters and hemorheological “properties” in determining the flow behavior of blood in microvascular networks. In: Lowe GDO. ed. Clinical Blood Rheology. Boca Raton, FL: CRC Press; 1988: 129-219
- 103 Klitzman B, Duling BR. Microvascular hematocrit and red cell flow in resting and contracting striated muscle. Am J Physiol 1979; 237 (04) H481-H490
- 104 Brizel DM, Klitzman B, Cook JM, Edwards J, Rosner G, Dewhirst MW. A comparison of tumor and normal tissue microvascular hematocrits and red cell fluxes in a rat window chamber model. Int J Radiat Oncol Biol Phys 1993; 25 (02) 269-276
- 105 Schmid-Schoenbein GW, Zweifach BW. RBC velocity profiles in arterioles and venules of the rabbit omentum. Microvasc Res 1975; 10 (02) 153-164
- 106 Başkurt OK, Edremitlioğlu M, Temiz A. Effect of erythrocyte deformability on myocardial hematocrit gradient. Am J Physiol 1995; 268 (1, Pt 2): H260-H264
- 107 Baskurt OK, Edremitlioglu M. Myocardial tissue hematocrit: existence of a transmural gradient and alterations after fibrinogen infusions. Clin Hemorheol 1995; 15: 97-105
- 108 Suzuki Y, Tateishi N, Soutani M, Maeda N. Flow behavior of erythrocytes in microvessels and glass capillaries: effects of erythrocyte deformation and erythrocyte aggregation. Int J Microcirc Clin Exp 1996; 16 (04) 187-194
- 109 Vicaut E. Opposite effects of red blood cell aggregation on resistance to blood flow. J Cardiovasc Surg (Torino) 1995; 36 (04) 361-368
- 110 Durussel JJ, Berthault MF, Guiffant G, Dufaux J. Effects of red blood cell hyperaggregation on the rat microcirculation blood flow. Acta Physiol Scand 1998; 163 (01) 25-32
- 111 Mchedlishvili G, Gobejishvili L, Beritashvili N. Effect of intensified red blood cell aggregability on arterial pressure and mesenteric microcirculation. Microvasc Res 1993; 45 (03) 233-242
- 112 Vicaut E, Hou X, Decuypère L, Taccoen A, Duvelleroy M. Red blood cell aggregation and microcirculation in rat cremaster muscle. Int J Microcirc Clin Exp 1994; 14 (1-2): 14-21
- 113 Charansonney O, Mouren S, Dufaux J, Duvelleroy M, Vicaut E. Red blood cell aggregation and blood viscosity in an isolated heart preparation. Biorheology 1993; 30 (01) 75-84
- 114 Rogausch H. The apparent viscosity of aggregating and non-aggregating erythrocyte suspensions in the isolated perfused liver. Biorheology 1987; 24 (02) 163-171
- 115 Verkeste CM, Boekkooi PF, Saxena PR, Peeters LL. Increased red cell aggregation does not reduce uteroplacental blood flow in the awake, hemoconcentrated, late-pregnant guinea pig. Pediatr Res 1992; 31 (01) 91-93
- 116 Cabel M, Meiselman HJ, Popel AS, Johnson PC. Contribution of red blood cell aggregation to venous vascular resistance in skeletal muscle. Am J Physiol 1997; 272 (2, Pt 2): H1020-H1032
- 117 Baskurt OK, Bor-Küçükatay M, Yalçin O. The effect of red blood cell aggregation on blood flow resistance. Biorheology 1999; 36 (5-6): 447-452
- 118 Calver A, Collier J, Vallance P. Nitric oxide and cardiovascular control. Exp Physiol 1993; 78 (03) 303-326
- 119 Fleming I, Bauersachs J, Busse R. Calcium-dependent and calcium-independent activation of the endothelial NO synthase. J Vasc Res 1997; 34 (03) 165-174
- 120 Vallance P, Chan N. Endothelial function and nitric oxide: clinical relevance. Heart 2001; 85 (03) 342-350
- 121 Nerem RM, Alexander RW, Chappell DC, Medford RM, Varner SE, Taylor WR. The study of the influence of flow on vascular endothelial biology. Am J Med Sci 1998; 316 (03) 169-175