CC BY 4.0 · Arq Neuropsiquiatr 2024; 82(06): s00431777782
DOI: 10.1055/s-0043-1777782
View and Review

Assisted technology in Parkinson's disease gait: what's up?

Tecnologia assistida na marcha da doença de Parkinson: o que há de novo?
1   Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, Centro de Distúrbios do Movimento, São Paulo SP, Brazil.
2   Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behavior, Department of Neurology, Nijmegen, The Netherlands.
,
3   Universidade de São Paulo, Faculdade de Medicina FMUSP, Departamento de Ortopedia e Traumatologia, São Paulo, SP, Brazil.
,
1   Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, Centro de Distúrbios do Movimento, São Paulo SP, Brazil.
,
3   Universidade de São Paulo, Faculdade de Medicina FMUSP, Departamento de Ortopedia e Traumatologia, São Paulo, SP, Brazil.
› Author Affiliations

Abstract

Background Gait disturbances are prevalent and debilitating symptoms, diminishing mobility and quality of life for Parkinson's disease (PD) individuals. While traditional treatments offer partial relief, there is a growing interest in alternative interventions to address this challenge. Recently, a remarkable surge in assisted technology (AT) development was witnessed to aid individuals with PD.

Objective To explore the burgeoning landscape of AT interventions tailored to alleviate PD-related gait impairments and describe current research related to such aim.

Methods In this review, we searched on PubMed for papers published in English (2018-2023). Additionally, the abstract of each study was read to ensure inclusion. Four researchers searched independently, including studies according to our inclusion and exclusion criteria.

Results We included studies that met all inclusion criteria. We identified key trends in assistive technology of gait parameters analysis in PD. These encompass wearable sensors, gait analysis, real-time feedback and cueing techniques, virtual reality, and robotics.

Conclusion This review provides a resource for guiding future research, informing clinical decisions, and fostering collaboration among researchers, clinicians, and policymakers. By delineating this rapidly evolving field's contours, it aims to inspire further innovation, ultimately improving the lives of PD patients through more effective and personalized interventions.

Resumo

Antecedentes Os distúrbios da marcha são sintomas prevalentes e debilitantes, diminuindo muito a mobilidade e a qualidade de vida dos indivíduos com doença de Parkinson (DP). Embora os tratamentos tradicionais ofereçam alívio parcial, há um interesse crescente em intervenções alternativas para enfrentar esse desafio. Recentemente, um aumento notável no desenvolvimento de tecnologia assistida (TA) foi testemunhado para ajudar indivíduos com DP.

Objetivo Explorar o cenário crescente de intervenções de TA adaptadas para aliviar deficiências de marcha relacionadas à DP e descrever as pesquisas atuais para esse fim.

Métodos Nessa revisão, pesquisamos artigos em inglês publicados no PubMed de 2018 a 2023. Além disso, os resumos de cada trabalho foram lidos para assegurar a sua inclusão. Quatro pesquisadores buscaram independentemente os artigos de acordo com os critérios de inclusão e exclusão.

Resultados Incluímos trabalhos que preencheram os critérios de inclusão. Identificamos as tendências em tecnologia assistiva na análise dos parâmetros da marcha em DP. Esses compreendem os sensores portáteis, análise da marcha, retroalimentação em tempo real e técnicas de pista, realidade virtual e robótica.

Conclusão Essa revisão é um recurso para orientar pesquisas futuras, informar decisões clínicas e promover a colaboração entre pesquisadores, médicos e formuladores de políticas. Ao delinear os contornos deste campo em rápida evolução, pretende inspirar mais inovação, melhorando em última análise a vida dos pacientes com DP através de intervenções mais eficazes e personalizadas.

Authors' Contributions

TTCC: conceptualization, data curation, formal analysis, methodology, writing – original draft, writing – review & editing; JC, JAM: data curation, writing – review & editing; HFC: conceptualization, data curation, formal analysis, writing – original draft, writing – review & editing.




Publication History

Received: 20 September 2023

Accepted: 21 November 2023

Article published online:
23 February 2024

© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution 4.0 International License, permitting copying and reproduction so long as the original work is given appropriate credit (https://creativecommons.org/licenses/by/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

Bibliographical Record
Tamine T. C. Capato, Janini Chen, Johnny de Araújo Miranda, Hsin Fen Chien. Assisted technology in Parkinson's disease gait: what's up?. Arq Neuropsiquiatr 2024; 82: s00431777782.
DOI: 10.1055/s-0043-1777782
 
  • References

  • 1 Bloem BR, Okun MS, Klein C. Parkinson's disease. Lancet 2021; 397 (10291): 2284-2303
  • 2 Capato TTC. Clinical Assessment and Management of Balance Impairments in Parkinson's disease, in Donders Institute. 2022. Radboud University; Nijmegen, the Netherlands: . p. 168. ISBN: 978–94–6423–873–0
  • 3 Saba RA, Maia DP, Cardoso FEC. et al. Guidelines for Parkinson's disease treatment: consensus from the Movement Disorders Scientific Department of the Brazilian Academy of Neurology - motor symptoms. Arq Neuropsiquiatr 2022; 80 (03) 316-329 DOI: 10.1590/0004-282X-ANP-2021-0219.
  • 4 García-López H, Obrero-Gaitán E, Castro-Sánchez AM, Lara-Palomo IC, Nieto-Escamez FA, Cortés-Pérez I. Non-Immersive Virtual Reality to Improve Balance and Reduce Risk of Falls in People Diagnosed with Parkinson's Disease: A Systematic Review. Brain Sci 2021; 11 (11) 1435 DOI: 10.3390/brainsci11111435.
  • 5 García-Bustillo Á, Valiñas-Sieiro F, Allende-Río M, González-Santos J, Cubo E. and the Multidisciplinary Telemedicine Group. Assistive Devices for Personal Mobility in Parkinson's Disease: A Systematic Review of the Literature. Mov Disord Clin Pract (Hoboken) 2022; 9 (08) 1040-1046
  • 6 Osborne JA, Botkin R, Colon-Semenza C. et al. Physical Therapist Management of Parkinson Disease: A Clinical Practice Guideline From the American Physical Therapy Association. Phys Ther 2022; 102 (04) pzab302 DOI: 10.1093/ptj/pzab302. Erratum in: Phys Ther. 2022 Aug 1;102(8): PMID: 34963139; PMCID: PMC9046970
  • 7 Espay AJ, Hausdorff JM, Sánchez-Ferro Á. et al; Movement Disorder Society Task Force on Technology. A roadmap for implementation of patient-centered digital outcome measures in Parkinson's disease obtained using mobile health technologies. Mov Disord 2019; 34 (05) 657-663 DOI: 10.1002/mds.27671.
  • 8 Silva de Lima AL, Hahn T, Evers LJW. et al. Feasibility of large-scale deployment of multiple wearable sensors in Parkinson's disease. PLoS One 2017; 12 (12) e0189161 DOI: 10.1371/journal.pone.0189161.
  • 9 Xue X, Yang X, Deng Z. Efficacy of rehabilitation robot-assisted gait training on lower extremity dyskinesia in patients with Parkinson's disease: A systematic review and meta-analysis. Ageing Res Rev 2023; 85: 101837
  • 10 Alwardat M, Etoom M, Al Dajah S. et al. Effectiveness of robot-assisted gait training on motor impairments in people with Parkinson's disease: a systematic review and meta-analysis. Int J Rehabil Res 2018; 41 (04) 287-296 DOI: 10.1097/MRR.0000000000000312.
  • 11 Picelli A, Melotti C, Origano F, Neri R, Waldner A, Smania N. Robot-assisted gait training versus equal intensity treadmill training in patients with mild to moderate Parkinson's disease: a randomized controlled trial. Parkinsonism Relat Disord 2013; 19 (06) 605-610 DOI: 10.1016/j.parkreldis.2013.02.010.
  • 12 Mirelman A, Rochester L, Maidan I. et al. Addition of a non-immersive virtual reality component to treadmill training to reduce fall risk in older adults (V-TIME): a randomised controlled trial. Lancet 2016; 388 (10050): 1170-1182 DOI: 10.1016/S0140-6736(16)31325-3.
  • 13 Janssen S, Bolte B, Nonnekes J. et al. Usability of Three-dimensional Augmented Visual Cues Delivered by Smart Glasses on (Freezing of) Gait in Parkinson's Disease. Front Neurol 2017; 8: 279 DOI: 10.3389/fneur.2017.00279.
  • 14 Pompeu JE, Mendes FA, Silva KG. et al. Effect of Nintendo Wii™-based motor and cognitive training on activities of daily living in patients with Parkinson's disease: a randomised clinical trial. Physiotherapy 2012; 98 (03) 196-204 DOI: 10.1016/j.physio.2012.06.004.
  • 15 Ellis TD, Earhart GM. Digital Therapeutics in Parkinson's Disease: Practical Applications and Future Potential. J Parkinsons Dis 2021; 11 (s1): S95-S101 DOI: 10.3233/JPD-202407.
  • 16 Silva de Lima AL, Smits T, Darweesh SKL. et al. Home-based monitoring of falls using wearable sensors in Parkinson's disease. Mov Disord 2020; 35 (01) 109-115 DOI: 10.1002/mds.27830.
  • 17 Tricco AC, Lillie E, Zarin W. et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann Intern Med 2018; 169 (07) 467-473
  • 18 Spanakis M, Xylouri I, Patelarou E, Patelarou A. A Literature Review of High-Tech Physiotherapy Interventions in the Elderly with Neurological Disorders. Int J Environ Res Public Health 2022; 19 (15) 9233 DOI: 10.3390/ijerph19159233.
  • 19 Peng K, Xie L, Hong R. et al. Early-onset and late-onset Parkinson's disease exhibit a different profile of gait and posture features based on the Kinect. Neurol Sci 2023; ••• : Epub ahead of print DOI: 10.1007/s10072-023-07009-y.
  • 20 Bansal SK, Basumatary B, Bansal R, Sahani AK. Techniques for the detection and management of freezing of gait in Parkinson's disease - A systematic review and future perspectives. MethodsX 2023; 10: 102106 DOI: 10.1016/j.mex.2023.102106.
  • 21 Yamagami M, Imsdahl S, Lindgren K. et al. Effects of virtual reality environments on overground walking in people with Parkinson disease and freezing of gait. Disabil Rehabil Assist Technol 2023; 18 (03) 266-273 DOI: 10.1080/17483107.2020.1842920.
  • 22 Lu M, Zhao Q, Poston KL. et al. Quantifying Parkinson's disease motor severity under uncertainty using MDS-UPDRS videos. Med Image Anal 2021; 73: 102179 DOI: 10.1016/j.media.2021.102179.
  • 23 Lu M, Poston K, Pfefferbaum A. et al. Vision-based Estimation of MDS-UPDRS Gait Scores for Assessing Parkinson's Disease Motor Severity. Med Image Comput Comput Assist Interv 2020; 12263: 637-647 DOI: 10.1007/978-3-030-59716-0_61.
  • 24 Gryfe P, Sexton A, McGibbon CA. Using gait robotics to improve symptoms of Parkinson's disease: an open-label, pilot randomized controlled trial. Eur J Phys Rehabil Med 2022; 58 (05) 723-737 DOI: 10.23736/S1973-9087.22.07549-9.
  • 25 Maranesi E, Casoni E, Baldoni R. et al. The Effect of Non-Immersive Virtual Reality Exergames versus Traditional Physiotherapy in Parkinson's Disease Older Patients: Preliminary Results from a Randomized-Controlled Trial. Int J Environ Res Public Health 2022; 19 (22) 14818 DOI: 10.3390/ijerph192214818.
  • 26 Yun SJ, Lee HH, Lee WH, Lee SH, Oh BM, Seo HG. Effect of robot-assisted gait training on gait automaticity in Parkinson disease: A prospective, open-label, single-arm, pilot study. Medicine (Baltimore) 2021; 100 (05) e24348 DOI: 10.1097/MD.0000000000024348.
  • 27 Fundarò C, Maestri R, Ferriero G, Chimento P, Taveggia G, Casale R. Self-selected speed gait training in Parkinson's disease: robot-assisted gait training with virtual reality versus gait training on the ground. Eur J Phys Rehabil Med 2019; 55 (04) 456-462 DOI: 10.23736/S1973-9087.18.05368-6.
  • 28 Penn IW, Sung WH, Lin PH. et al. Speed and temporal adaptations during nonmotorized treadmill walking in Parkinson disease and nondisabled individuals. Int J Rehabil Res 2019; 42 (02) 126-132 DOI: 10.1097/MRR.0000000000000334.
  • 29 Capecci M, Pournajaf S, Galafate D. et al. Clinical effects of robot-assisted gait training and treadmill training for Parkinson's disease. A randomized controlled trial. Ann Phys Rehabil Med 2019; 62 (05) 303-312 DOI: 10.1016/j.rehab.2019.06.016.
  • 30 Han Y, Liu X, Zhang N. et al. Automatic Assessments of Parkinsonian Gait with Wearable Sensors for Human Assistive Systems. Sensors (Basel) 2023; 23 (04) 2104 DOI: 10.3390/s23042104.
  • 31 Laar A, Silva de Lima AL, Maas BR, Bloem BR, de Vries NM. Successful implementation of technology in the management of Parkinson's disease: Barriers and facilitators. Clin Park Relat Disord 2023; 8: 100188 DOI: 10.1016/j.prdoa.2023.100188.
  • 32 Brognara L, Palumbo P, Grimm B, Palmerini L. Assessing Gait in Parkinson's Disease Using Wearable Motion Sensors: A Systematic Review. Diseases 2019; 7 (01) 18 DOI: 10.3390/diseases7010018.
  • 33 Guo Y, Yang J, Liu Y, Chen X, Yang GZ. Detection and assessment of Parkinson's disease based on gait analysis: A survey. Front Aging Neurosci 2022; 14: 916971 DOI: 10.3389/fnagi.2022.916971.
  • 34 Mate KKV, Abou-Sharkh A, Mansoubi M. et al. Evidence for the Efficacy of Commercially Available Wearable Biofeedback Gait Devices: Consumer-Centered Review. JMIR Rehabil Assist Technol 2023; 10: e40680 DOI: 10.2196/40680.
  • 35 Tsakanikas V, Ntanis A, Rigas G. et al. Evaluating Gait Impairment in Parkinson's Disease from Instrumented Insole and IMU Sensor Data. Sensors (Basel) 2023; 23 (08) 3902 DOI: 10.3390/s23083902.
  • 36 Zhu S, Wu Z, Wang Y. et al. Gait Analysis with Wearables Is a Potential Progression Marker in Parkinson's Disease. Brain Sci 2022; 12 (09) 1213 DOI: 10.3390/brainsci12091213.
  • 37 Nóbrega LR, Rocon E, Pereira AA, Andrade AO. A Novel Physical Mobility Task to Assess Freezers in Parkinson's Disease. Healthcare (Basel) 2023; 11 (03) 409 DOI: 10.3390/healthcare11030409.
  • 38 Marcante A, Di Marco R, Gentile G. et al. Foot Pressure Wearable Sensors for Freezing of Gait Detection in Parkinson's Disease. Sensors (Basel) 2020; 21 (01) 128 DOI: 10.3390/s21010128.
  • 39 di Biase L, Raiano L, Caminiti ML, Pecoraro PM, Di Lazzaro V. Parkinson's Disease Wearable Gait Analysis: Kinematic and Dynamic Markers for Diagnosis. Sensors (Basel) 2022; 22 (22) 8773 DOI: 10.3390/s22228773.
  • 40 Barthel C, Nonnekes J, van Helvert M. et al. The laser shoes: A new ambulatory device to alleviate freezing of gait in Parkinson disease. Neurology 2018; 90 (02) e164-e171 DOI: 10.1212/WNL.0000000000004795.
  • 41 Capato TTC, de Vries NM, IntHout J, Barbosa ER, Nonnekes J, Bloem BR. Multimodal Balance Training Supported by Rhythmical Auditory Stimuli in Parkinson's Disease: A Randomized Clinical Trial. J Parkinsons Dis 2020; 10 (01) 333-346 DOI: 10.3233/JPD-191752.
  • 42 Klaver EC, van Vugt JPP, Bloem BR, van Wezel RJA, Nonnekes J, Tjepkema-Cloostermans MC. Good vibrations: tactile cueing for freezing of gait in Parkinson's disease. J Neurol 2023; 270 (07) 3424-3432 DOI: 10.1007/s00415-023-11663-9.
  • 43 Santos P, Machado T, Santos L, Ribeiro N, Melo A. Efficacy of the Nintendo Wii combination with Conventional Exercises in the rehabilitation of individuals with Parkinson's disease: A randomized clinical trial. NeuroRehabilitation 2019; 45 (02) 255-263
  • 44 Pazzaglia C, Imbimbo I, Tranchita E. et al. Comparison of virtual reality rehabilitation and conventional rehabilitation in Parkinson's disease: a randomised controlled trial. Physiotherapy 2020; 106: 36-42 DOI: 10.1016/j.physio.2019.12.007.
  • 45 Bekkers EMJ, Mirelman A, Alcock L. et al. Do Patients With Parkinson's Disease With Freezing of Gait Respond Differently Than Those Without to Treadmill Training Augmented by Virtual Reality?. Neurorehabil Neural Repair 2020; 34 (05) 440-449 DOI: 10.1177/1545968320912756.
  • 46 Pelosin E, Ponte C, Putzolu M. et al. Motor-Cognitive Treadmill Training With Virtual Reality in Parkinson's Disease: The Effect of Training Duration. Front Aging Neurosci 2022; 13: 753381 DOI: 10.3389/fnagi.2021.753381.
  • 47 Hajebrahimi F, Velioglu HA, Bayraktaroglu Z, Helvaci Yilmaz N, Hanoglu L. Clinical evaluation and resting state fMRI analysis of virtual reality based training in Parkinson's disease through a randomized controlled trial. Sci Rep 2022; 12 (01) 8024 DOI: 10.1038/s41598-022-12061-3.
  • 48 Feitosa JA, Fernandes CA, Casseb RF, Castellano G. Effects of virtual reality-based motor rehabilitation: a systematic review of fMRI studies. J Neural Eng 2022; 19 (01) DOI: 10.1088/1741-2552/ac456e.
  • 49 Freitag F, Brucki SMD, Barbosa AF. et al. Is virtual reality beneficial for dual-task gait training in patients with Parkinson's disease? A systematic review. Dement Neuropsychol 2019; 13 (03) 259-267 DOI: 10.1590/1980-57642018dn13-030002.
  • 50 Lei C, Sunzi K, Dai F. et al. Effects of virtual reality rehabilitation training on gait and balance in patients with Parkinson's disease: A systematic review. PLoS One 2019; 14 (11) e0224819 DOI: 10.1371/journal.pone.0224819.
  • 51 Kashif M, Ahmad A, Bandpei MAM, Farooq M, Iram H. E Fatima R. Systematic review of the application of virtual reality to improve balance, gait and motor function in patients with Parkinson's disease. Medicine (Baltimore) 2022; 101 (31) e29212 DOI: 10.1097/MD.0000000000029212.
  • 52 Kwon SH, Park JK, Koh YH. A systematic review and meta-analysis on the effect of virtual reality-based rehabilitation for people with Parkinson's disease. J Neuroeng Rehabil 2023; 20 (01) 94 DOI: 10.1186/s12984-023-01219-3.
  • 53 Abd-Alrazaq A, Alhuwail D, Al-Jafar E. et al. The Effectiveness of Serious Games in Improving Memory Among Older Adults With Cognitive Impairment: Systematic Review and Meta-analysis. JMIR Serious Games 2022; 10 (03) e35202
  • 54 Wu J, Zhang H, Chen Z. et al. Benefits of Virtual Reality Balance Training for Patients With Parkinson Disease: Systematic Review, Meta-analysis, and Meta-Regression of a Randomized Controlled Trial. JMIR Serious Games 2022; 10 (01) e30882 DOI: 10.2196/30882.
  • 55 Li R, Zhang Y, Jiang Y, Wang M, Ang WHD, Lau Y. Rehabilitation training based on virtual reality for patients with Parkinson's disease in improving balance, quality of life, activities of daily living, and depressive symptoms: A systematic review and meta-regression analysis. Clin Rehabil 2021; 35 (08) 1089-1102 DOI: 10.1177/0269215521995179.
  • 56 Sarasso E, Gardoni A, Tettamanti A, Agosta F, Filippi M, Corbetta D. Virtual reality balance training to improve balance and mobility in Parkinson's disease: a systematic review and meta-analysis. J Neurol 2022; 269 (04) 1873-1888 DOI: 10.1007/s00415-021-10857-3.
  • 57 Navarro-Lozano F, Kiper P, Carmona-Pérez C, Rutkowski S, Pinero-Pinto E, Luque-Moreno C. Effects of Non-Immersive Virtual Reality and Video Games on Walking Speed in Parkinson Disease: A Systematic Review and Meta-Analysis. J Clin Med 2022; 11 (22) 6610 DOI: 10.3390/jcm11226610.
  • 58 Brandín-De la Cruz N, Secorro N, Calvo S, Benyoucef Y, Herrero P, Bellosta-López P. Immersive virtual reality and antigravity treadmill training for gait rehabilitation in Parkinson's disease: a pilot and feasibility study. Rev Neurol 2020; 71 (12) 447-454 DOI: 10.33588/rn.7112.2020352.
  • 59 Kim H, Kim E, Yun SJ. et al. Robot-assisted gait training with auditory and visual cues in Parkinson's disease: A randomized controlled trial. Ann Phys Rehabil Med 2022; 65 (03) 101620 DOI: 10.1016/j.rehab.2021.101620.
  • 60 Kawashima N, Hasegawa K, Iijima M. et al. Efficacy of Wearable Device Gait Training on Parkinson's Disease: A Randomized Controlled Open-label Pilot Study. Intern Med 2022; 61 (17) 2573-2580 DOI: 10.2169/internalmedicine.8949-21.
  • 61 Alwardat M, Etoom M. Effectiveness of robot-assisted gait training on freezing of gait in people with Parkinson disease: evidence from a literature review. J Exerc Rehabil 2019; 15 (02) 187-192 DOI: 10.12965/jer.1836618.309.
  • 62 Fujii C, Wakizaka N, Araki Y, Tashiro K, Endou M. Video analysis of safety and reproducibility issues with the timed up-and-go test applied to patients with Parkinson's disease. Disabil Rehabil Assist Technol 2022; 17 (07) 801-806 DOI: 10.1080/17483107.2020.1817990.
  • 63 Abou L, Peters J, Wong E. et al. Gait and Balance Assessments using Smartphone Applications in Parkinson's Disease: A Systematic Review. J Med Syst 2021; 45 (09) 87 DOI: 10.1007/s10916-021-01760-5.
  • 64 Ferraris C, Amprimo G, Masi G. et al. Evaluation of Arm Swing Features and Asymmetry during Gait in Parkinson's Disease Using the Azure Kinect Sensor. Sensors (Basel) 2022; 22 (16) 6282 DOI: 10.3390/s22166282.
  • 65 Brand YE, Schwartz D, Gazit E, Buchman AS, Gilad-Bachrach R, Hausdorff JM. Gait Detection from a Wrist-Worn Sensor Using Machine Learning Methods: A Daily Living Study in Older Adults and People with Parkinson's Disease. Sensors (Basel) 2022; 22 (18) 7094 DOI: 10.3390/s22187094.
  • 66 Zhang M, Artan NS, Gu H. et al. Gait Study of Parkinson's Disease Subjects Using Haptic Cues with A Motorized Walker. Sensors (Basel) 2018; 18 (10) 3549 DOI: 10.3390/s18103549.
  • 67 Evers LJW, Peeters JM, Bloem BR, Meinders MJ. Need for personalized monitoring of Parkinson's disease: the perspectives of patients and specialized healthcare providers. Front Neurol 2023; 14: 1150634 DOI: 10.3389/fneur.2023.1150634.
  • 68 Capato TTC, de Vries NM, IntHout J. et al. Multimodal Balance Training Supported by Rhythmic Auditory Stimuli in Parkinson Disease: Effects in Freezers and Nonfreezers. Phys Ther 2020; 100 (11) 2023-2034 DOI: 10.1093/ptj/pzaa146.
  • 69 Yun SJ, Hyun SE, Oh BM, Seo HG. Fully immersive virtual reality exergames with dual-task components for patients with Parkinson's disease: a feasibility study. J Neuroeng Rehabil 2023; 20 (01) 92 DOI: 10.1186/s12984-023-01215-7.
  • 70 Chuang CS, Chen YW, Zeng BY. et al. Effects of modern technology (exergame and virtual reality) assisted rehabilitation vs conventional rehabilitation in patients with Parkinson's disease: a network meta-analysis of randomised controlled trials. Physiotherapy 2022; 117: 35-42 DOI: 10.1016/j.physio.2022.07.001.
  • 71 Souza CO, Voos MC, Barbosa AF. et al. Relationship Between Posturography, Clinical Balance and Executive Function in Parkinson's Disease. J Mot Behav 2019; 51 (02) 212-221 DOI: 10.1080/00222895.2018.1458279.
  • 72 Pardoel S, Kofman J, Nantel J, Lemaire ED. Wearable-Sensor-based Detection and Prediction of Freezing of Gait in Parkinson's Disease: A Review. Sensors (Basel) 2019; 19 (23) 5141 DOI: 10.3390/s19235141.
  • 73 Mekki M, Delgado AD, Fry A, Putrino D, Huang V. Robotic Rehabilitation and Spinal Cord Injury: a Narrative Review. Neurotherapeutics 2018; 15 (03) 604-617 DOI: 10.1007/s13311-018-0642-3.
  • 74 Yang Y, Wang G, Zhang S. et al. Efficacy and evaluation of therapeutic exercises on adults with Parkinson's disease: a systematic review and network meta-analysis. BMC Geriatr 2022; 22 (01) 813 DOI: 10.1186/s12877-022-03510-9.