CC BY 4.0 · Arq Neuropsiquiatr 2024; 82(06): s00431777755
DOI: 10.1055/s-0043-1777755
View and Review

Gene-based therapies for neuromuscular disorders

Terapias gênicas nas doenças neuromusculares
1   Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, São Paulo SP, Brazil.
,
2   Universidade Estadual de Campinas, Faculdade de Ciências Médicas, Departamento de Neurologia, Campinas SP, Brazil.
,
3   Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Neurociências e Ciências do Comportamento, Ribeirão Preto SP, Brazil.
› Author Affiliations
Support This study was supported by ABN (Academia Brasileira de Neurologia).

Abstract

Neuromuscular diseases (NMD) include a broad group of medical conditions with both acquired and genetic causes. In recent years, important advances have been made in the treatment of genetically caused NMD, and most of these advances are due to the implementation of therapies aimed at gene regulation. Among these therapies, gene replacement, small interfering RNA (siRNA), and antisense antinucleotides are the most promising approaches. More importantly, some of these therapies have already gained regulatory approval or are in the final stages of approval. The review focuses on motor neuron diseases, neuropathies, and Duchenne muscular dystrophy, summarizing the most recent developments in gene-based therapies for these conditions.

Resumo

Doenças neuromusculares (DNM) compõem um grupo amplo de doenças de causa tanto adquiridas quanto genéticas. Nos últimos anos, importantes avanços ocorreram quanto ao tratamento das DNM de causa genética e grande parte desses avanços se deve à implementação de terapias voltadas para a modificação gênica. Dentre essas terapias, destacam-se as terapias de reposição gênica, uso de RNA de interferência, uso de antinucleotídeos antisense, entre outras. E, mais importante, algumas dessas terapias já se tornaram realidade na prática médica e já foram aprovadas, ou estão a poucos passos da aprovação, por órgãos governamentais regulatórios. Esta revisão aborda aspectos mais recentes quanto ao uso das terapias genéticas avançadas para algumas das formas mais comuns de DNM, em especial para doenças do neurônio motor (esclerose lateral amiotrófica e atrofia muscular espinhal), neuropatias e distrofia muscular de Duchenne.

Authors' Contributions

EZ, MCFJ, WMJ: conceptualization, formal analysis, investigation, methodology, validation, writing-original draft, writing-review & editing.




Publication History

Received: 08 November 2023

Accepted: 22 November 2023

Article published online:
07 February 2024

© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution 4.0 International License, permitting copying and reproduction so long as the original work is given appropriate credit (https://creativecommons.org/licenses/by/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

Bibliographical Record
Edmar Zanoteli, Marcondes Cavalcante França, Wilson Marques. Gene-based therapies for neuromuscular disorders. Arq Neuropsiquiatr 2024; 82: s00431777755.
DOI: 10.1055/s-0043-1777755
 
  • References

  • 1 Landfeldt E. Gene Therapy for Neuromuscular Diseases: Health Economic Challenges and Future Perspectives. J Neuromuscul Dis 2022; 9 (06) 675-688
  • 2 Mendell JR, Al-Zaidy S, Shell R. et al. Single-Dose Gene-Replacement Therapy for Spinal Muscular Atrophy. N Engl J Med 2017; 377 (18) 1713-1722
  • 3 Finkel RS, Mercuri E, Darras BT. et al; ENDEAR Study Group. Nusinersen versus Sham Control in Infantile-Onset Spinal Muscular Atrophy. N Engl J Med 2017; 377 (18) 1723-1732
  • 4 Baranello G, Darras BT, Day JW. et al; FIREFISH Working Group. Risdiplam in Type 1 Spinal Muscular Atrophy. N Engl J Med 2021; 384 (10) 915-923
  • 5 Benson MD, Waddington-Cruz M, Berk JL. et al. Inotersen Treatment for Patients with Hereditary Transthyretin Amyloidosis. N Engl J Med 2018; 379 (01) 22-31
  • 6 Adams D, Gonzalez-Duarte A, O'Riordan WD. et al. Patisiran, an RNAi Therapeutic, for Hereditary Transthyretin Amyloidosis. N Engl J Med 2018; 379 (01) 11-21
  • 7 Rossor AM, Reilly MM, Sleigh JN. Antisense oligonucleotides and other genetic therapies made simple. Pract Neurol 2018; 18 (02) 126-131
  • 8 Goyal N, Narayanaswami P. Making sense of antisense oligonucleotides: A narrative review. Muscle Nerve 2018; 57 (03) 356-370
  • 9 Lam JK, Chow MY, Zhang Y, Leung SW. siRNA Versus miRNA as Therapeutics for Gene Silencing. Mol Ther Nucleic Acids 2015; 4 (09) e252
  • 10 Kay MA. State-of-the-art gene-based therapies: the road ahead. Nat Rev Genet 2011; 12 (05) 316-328
  • 11 Brown Jr RH, Al-Chalabi A. Amyotrophic Lateral Sclerosis. N Engl J Med 2017; 377 (16) 1602
  • 12 Akçimen F, Lopez ER, Landers JE. et al. Amyotrophic lateral sclerosis: translating genetic discoveries into therapies. Nat Rev Genet 2023; 24 (09) 642-658
  • 13 Chia R, Chiò A, Traynor BJ. Novel genes associated with amyotrophic lateral sclerosis: diagnostic and clinical implications. Lancet Neurol 2018; 17 (01) 94-102
  • 14 Miller TM, Cudkowicz ME, Genge A. et al; VALOR and OLE Working Group. Trial of Antisense Oligonucleotide Tofersen for SOD1 ALS. N Engl J Med 2022; 387 (12) 1099-1110
  • 15 Mueller C, Berry JD, McKenna-Yasek DM. et al. SOD1 Suppression with Adeno-Associated Virus and MicroRNA in Familial ALS. N Engl J Med 2020; 383 (02) 151-158
  • 16 Rosen DR, Siddique T, Patterson D. et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 1993; 362 (6415): 59-62
  • 17 https://www.fda.gov/drugs/news-events-human-drugs/fda-approves-treatment-amyotrophic-lateral-sclerosis-associated-mutation-sod1-gene
  • 18 Benatar M, Wuu J, Andersen PM. et al. Design of a Randomized, Placebo-Controlled, Phase 3 Trial of Tofersen Initiated in Clinically Presymptomatic SOD1 Variant Carriers: the ATLAS Study. Neurotherapeutics 2022; 19 (04) 1248-1258
  • 19 https://uniqure.gcs-web.com/news-releases/news-release-details/uniqure-and-apic-bio-enter-global-licensing-agreement-apb-102
  • 20 https://investors.biogen.com/news-releases/news-release-details/biogen-and-ionis-announce-topline-phase-1-study-results
  • 21 Boros BD, Schoch KM, Kreple CJ, Miller TM. Antisense Oligonucleotides for the Study and Treatment of ALS. Neurotherapeutics 2022; 19 (04) 1145-1158
  • 22 Tavares de Andrade HM, Cintra VP, de Albuquerque M. et al. Intermediate-length CAG repeat in ATXN2 is associated with increased risk for amyotrophic lateral sclerosis in Brazilian patients. Neurobiol Aging 2018; 69: 292.e15-292.e18
  • 23 Becker LA, Huang B, Bieri G. et al. Therapeutic reduction of ataxin-2 extends lifespan and reduces pathology in TDP-43 mice. Nature 2017; 544 (7650): 367-371
  • 24 Lefebvre S, Bürglen L, Reboullet S. et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell 1995; 80 (01) 155-165
  • 25 Kolb SJ, Kissel JT. Spinal muscular atrophy: a timely review. Arch Neurol 2011; 68 (08) 979-984
  • 26 Finkel R, Bertini E, Muntoni F, Mercuri E. ENMC SMA Workshop Study Group. 209th ENMC International Workshop: Outcome Measures and Clinical Trial Readiness in Spinal Muscular Atrophy 7-9 November 2014, Heemskerk, The Netherlands. Neuromuscul Disord 2015; 25 (07) 593-602
  • 27 Mendonça RH, Matsui Jr C, Polido GJ. et al. Intragenic variants in the SMN1 gene determine the clinical phenotype in 5q spinal muscular atrophy. Neurol Genet 2020; 6 (05) e505
  • 28 Calucho M, Bernal S, Alías L. et al. Correlation between SMA type and SMN2 copy number revisited: An analysis of 625 unrelated Spanish patients and a compilation of 2834 reported cases. Neuromuscul Disord 2018; 28 (03) 208-215
  • 29 Chen TH. New and Developing Therapies in Spinal Muscular Atrophy: From Genotype to Phenotype to Treatment and Where Do We Stand?. Int J Mol Sci 2020; 21 (09) 3297
  • 30 Chiriboga CA, Swoboda KJ, Darras BT. et al. Results from a phase 1 study of nusinersen (ISIS-SMN(Rx)) in children with spinal muscular atrophy. Neurology 2016; 86 (10) 890-897
  • 31 Finkel RS, Chiriboga CA, Vajsar J. et al. Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study. Lancet 2016; 388 (10063): 3017-3026
  • 32 Mercuri E, Darras BT, Chiriboga CA. et al; CHERISH Study Group. Nusinersen versus sham control in later-onset spinal muscular atrophy. N Engl J Med 2018; 378 (07) 625-635 DOI: 10.1056/NEJMoa1710504.
  • 33 Darras BT, Chiriboga CA, Iannaccone ST. et al; ISIS-396443-CS2/ISIS-396443-CS12 Study Groups. Nusinersen in later-onset spinal muscular atrophy: Long-term results from the phase 1/2 studies. Neurology 2019; 92 (21) e2492-e2506 DOI: 10.1212/WNL.0000000000007527.
  • 34 Finkel RS, Chiriboga CA, Vajsar J. et al. Treatment of infantile-onset spinal muscular atrophy with nusinersen: final report of a phase 2, open-label, multicentre, dose-escalation study. Lancet Child Adolesc Health 2021; 5 (07) 491-500 DOI: 10.1016/S2352-4642(21)00100-0.
  • 35 Hagenacker T, Wurster CD, Günther R. et al. Nusinersen in adults with 5q spinal muscular atrophy: a non-interventional, multicentre, observational cohort study. Lancet Neurol 2020; 19 (04) 317-325 DOI: 10.1016/S1474-4422(20)30037-5.
  • 36 de Holanda Mendonça R, Jorge Polido G, Ciro M, Jorge Fontoura Solla D, Conti Reed U, Zanoteli E. Clinical Outcomes in Patients with Spinal Muscular Atrophy Type 1 Treated with Nusinersen. J Neuromuscul Dis 2021; 8 (02) 217-224 DOI: 10.3233/JND-200533.
  • 37 Mendonça RH, Polido GJ, Matsui C. et al. Real-World Data from Nusinersen Treatment for Patients with Later-Onset Spinal Muscular Atrophy: A Single Center Experience. J Neuromuscul Dis 2021; 8 (01) 101-108 DOI: 10.3233/JND-200551.
  • 38 Gavriilaki M, Moschou M, Papaliagkas V. et al. Nusinersen in Adults with 5q Spinal Muscular Atrophy: a Systematic Review and Meta-analysis. Neurotherapeutics 2022; 19 (02) 464-475 DOI: 10.1007/s13311-022-01200-3.
  • 39 De Vivo DC, Bertini E, Swoboda KJ. et al; NURTURE Study Group. Nusinersen initiated in infants during the presymptomatic stage of spinal muscular atrophy: Interim efficacy and safety results from the Phase 2 NURTURE study. Neuromuscul Disord 2019; 29 (11) 842-856 DOI: 10.1016/j.nmd.2019.09.007.
  • 40 Crawford TO, Swoboda KJ, De Vivo DC. et al; NURTURE Study Group. Continued benefit of nusinersen initiated in the presymptomatic stage of spinal muscular atrophy: 5-year update of the NURTURE study. Muscle Nerve 2023; 68 (02) 157-170 DOI: 10.1002/mus.27853.
  • 41 Ratni H, Ebeling M, Baird J. et al. Discovery of Risdiplam, a Selective Survival of Motor Neuron-2 ( SMN2) Gene Splicing Modifier for the Treatment of Spinal Muscular Atrophy (SMA). J Med Chem 2018; 61 (15) 6501-6517
  • 42 Darras BT, Masson R, Mazurkiewicz-Bełdzińska M. et al; FIREFISH Working Group. Risdiplam-Treated Infants with Type 1 Spinal Muscular Atrophy versus Historical Controls. N Engl J Med 2021; 385 (05) 427-435 DOI: 10.1056/nejmoa2102047.
  • 43 Finkel RS, Farrar MA, Servais L. et al. RAINBOWFISH: Primary efficacy and safety data in risdiplam-treated infants with presymptomatic spinal muscular atrophy (SMA). In: 28th International Annual Congress of the World Muscle Society (WMS), Charleston, USA; October 3–7, 2023
  • 44 Masson R, Mazurkiewicz-Bełdzińska M, Rose K. et al; FIREFISH Study Group. Safety and efficacy of risdiplam in patients with type 1 spinal muscular atrophy (FIREFISH part 2): secondary analyses from an open-label trial. Lancet Neurol 2022; 21 (12) 1110-1119 DOI: 10.1016/S1474-4422(22)00339-8.
  • 45 Mercuri E, Baranello G, Boespflug-Tanguy O. et al. Risdiplam in types 2 and 3 spinal muscular atrophy: A randomized, placebo-controlled, dose-finding trial followed by 24 months of treatment. Eur J Neurol 2023; 30 (07) 1945-1956 DOI: 10.1111/ene.15499.
  • 46 Mercuri E, Deconinck N, Mazzone ES. et al; SUNFISH Study Group. Safety and efficacy of once-daily risdiplam in type 2 and non-ambulant type 3 spinal muscular atrophy (SUNFISH part 2): a phase 3, double-blind, randomised, placebo-controlled trial. Lancet Neurol 2022; 21 (01) 42-52 DOI: 10.1016/S1474-4422(21)00367-7.
  • 47 Oskoui M, Day JW, Deconinck N. et al; SUNFISH Working Group. Two-year efficacy and safety of risdiplam in patients with type 2 or non-ambulant type 3 spinal muscular atrophy (SMA). J Neurol 2023; 270 (05) 2531-2546 DOI: 10.1007/s00415-023-11560-1.
  • 48 Chiriboga CA, Bruno C, Duong T. et al; JEWELFISH Study Group. Risdiplam in Patients Previously Treated with Other Therapies for Spinal Muscular Atrophy: An Interim Analysis from the JEWELFISH Study. Neurol Ther 2023; 12 (02) 543-557 DOI: 10.1007/s40120-023-00444-1.
  • 49 Pascual-Morena C, Martínez-Vizcaíno V, Cavero-Redondo I. et al. Efficacy of risdiplam in spinal muscular atrophy: A systematic review and meta-analysis. Pharmacotherapy 2023; ••• DOI: 10.1002/phar.2866.
  • 50 Mendell JR, Al-Zaidy SA, Lehman KJ. et al. Five-Year Extension Results of the Phase 1 START Trial of Onasemnogene Abeparvovec in Spinal Muscular Atrophy. JAMA Neurol 2021; 78 (07) 834-841 DOI: 10.1001/jamaneurol.2021.1272.
  • 51 Mercuri E, Muntoni F, Baranello G. et al; STR1VE-EU study group. Onasemnogene abeparvovec gene therapy for symptomatic infantile-onset spinal muscular atrophy type 1 (STR1VE-EU): an open-label, single-arm, multicentre, phase 3 trial. Lancet Neurol 2021; 20 (10) 832-841 DOI: 10.1016/S1474-4422(21)00251-9.
  • 52 Day JW, Finkel RS, Chiriboga CA. et al. Onasemnogene abeparvovec gene therapy for symptomatic infantile-onset spinal muscular atrophy in patients with two copies of SMN2 (STR1VE): an open-label, single-arm, multicentre, phase 3 trial. Lancet Neurol 2021; 20 (04) 284-293 DOI: 10.1016/S1474-4422(21)00001-6.
  • 53 Weiss C, Ziegler A. , Becker -L-L, et al Gene replacement therapy with onasemnogene abeparvovec in children with spinal muscular atrophy aged 24 months or younger and bodyweight up to 15 kg: an observational cohort study. Lancet Child Adolesc Health 2022; 6 (01) 17-27 DOI: 10.1016/S2352-4642(21)00287-X.
  • 54 Pane M, Berti B, Capasso A. et al; ITASMAc group. Onasemnogene abeparvovec in spinal muscular atrophy: predictors of efficacy and safety in naïve patients with spinal muscular atrophy and following switch from other therapies. EClinicalMedicine 2023; 59: 101997 DOI: 10.1016/j.eclinm.2023.101997.
  • 55 Yang D, Ruan Y, Chen Y. Safety and efficacy of gene therapy with onasemnogene abeparvovec in the treatment of spinal muscular atrophy: A systematic review and meta-analysis. J Paediatr Child Health 2023; 59 (03) 431-438 DOI: 10.1111/jpc.16340.
  • 56 Strauss KA, Farrar MA, Muntoni F. et al. Onasemnogene abeparvovec for presymptomatic infants with two copies of SMN2 at risk for spinal muscular atrophy type 1: the Phase III SPR1NT trial. Nat Med 2022; 28 (07) 1381-1389 DOI: 10.1038/s41591-022-01866-4.
  • 57 Strauss KA, Farrar MA, Muntoni F. et al. Onasemnogene abeparvovec for presymptomatic infants with three copies of SMN2 at risk for spinal muscular atrophy: the Phase III SPR1NT trial. Nat Med 2022b; 28 (07) 1390-1397 DOI: 10.1038/s41591-022-01867-3.
  • 58 Shell RD, McGrattan KE, Hurst-Davis R. et al. Onasemnogene abeparvovec preserves bulbar function in infants with presymptomatic spinal muscular atrophy: a post-hoc analysis of the SPR1NT trial. Neuromuscul Disord 2023; 33 (08) 670-676 DOI: 10.1016/j.nmd.2023.06.005.
  • 59 Ogbonmide T, Rathore R, Rangrej SB. et al. Gene Therapy for Spinal Muscular Atrophy (SMA): A Review of Current Challenges and Safety Considerations for Onasemnogene Abeparvovec (Zolgensma). Cureus 2023; 15 (03) e36197 DOI: 10.7759/cureus.36197.
  • 60 Guillou J, de Pellegars A, Porcheret F. et al. Fatal thrombotic microangiopathy case following adeno-associated viral SMN gene therapy. Blood Adv 2022; 6 (14) 4266-4270 DOI: 10.1182/bloodadvances.2021006419.
  • 61 Philippidis A. Novartis Confirms Deaths of Two Patients Treated with Gene Therapy Zolgensma. Hum Gene Ther 2022; 33 (17-18): 842-844 DOI: 10.1089/hum.2022.29216.bfs.
  • 62 Galletta F, Cucinotta U, Marseglia L. et al. Hemophagocytic lymphohistiocytosis following gene replacement therapy in a child with type 1 spinal muscular atrophy. J Clin Pharm Ther 2022; 47 (09) 1478-1481 DOI: 10.1111/jcpt.13733.
  • 63 Gaillard J, Gu AR, Neil Knierbein EE. Necrotizing Enterocolitis following Onasemnogene Abeparvovec for Spinal Muscular Atrophy: A Case Series. J Pediatr 2023; 260: 113493 DOI: 10.1016/j.jpeds.2023.113493.
  • 64 Finkel RS, Darras BT, Mendell JR. et al. Intrathecal Onasemnogene Abeparvovec for Sitting, Nonambulatory Patients with Spinal Muscular Atrophy: Phase I Ascending-Dose Study (STRONG). J Neuromuscul Dis 2023; 10 (03) 389-404 DOI: 10.3233/JND-221560.
  • 65 Poli L, Labella B, Cotti Piccinelli S. et al. Hereditary transthyretin amyloidosis: a comprehensive review with a focus on peripheral neuropathy. Front Neurol 2023; 14: 1242815 DOI: 10.3389/fneur.2023.1242815.
  • 66 Adams D, Sekijima Y, Conceição I. et al. Hereditary transthyretin amyloid neuropathies: advances in pathophysiology, biomarkers, and treatment. Lancet Neurol 2023; 22 (11) 1061-1074 DOI: 10.1016/S1474-4422(23)00334-4.
  • 67 Carroll A, Dyck PJ, de Carvalho M. et al. Novel approaches to diagnosis and management of hereditary transthyretin amyloidosis. J Neurol Neurosurg Psychiatry 2022; 93 (06) 668-678 DOI: 10.1136/jnnp-2021-327909.
  • 68 Brannagan TH, Wang AK, Coelho T. et al; NEURO-TTR open-label extension investigators. Early data on long-term efficacy and safety of inotersen in patients with hereditary transthyretin amyloidosis: a 2-year update from the open-label extension of the NEURO-TTR trial. Eur J Neurol 2020; 27 (08) 1374-1381 DOI: 10.1111/ene.14285.
  • 69 Coelho T, Waddington Cruz M, Chao CC. et al. Characteristics of Patients with Hereditary Transthyretin Amyloidosis-Polyneuropathy (ATTRv-PN) in NEURO-TTRansform, an Open-label Phase 3 Study of Eplontersen. Neurol Ther 2023; 12 (01) 267-287 DOI: 10.1007/s40120-022-00414-z.
  • 70 Coelho T, Marques Jr W, Dasgupta NR. et al; NEURO-TTRansform Investigators. Eplontersen for Hereditary Transthyretin Amyloidosis With Polyneuropathy. JAMA 2023; 330 (15) 1448-1458
  • 71 Adams D, Polydefkis M, González-Duarte A. et al; patisiran Global OLE study group. Long-term safety and efficacy of patisiran for hereditary transthyretin-mediated amyloidosis with polyneuropathy: 12-month results of an open-label extension study. Lancet Neurol 2021; 20 (01) 49-59 DOI: 10.1016/S1474-4422(20)30368-9.
  • 72 Schmidt HH, Wixner J, Planté-Bordeneuve V. et al; Patisiran Post-LT Study Group. Patisiran treatment in patients with hereditary transthyretin-mediated amyloidosis with polyneuropathy after liver transplantation. Am J Transplant 2022; 22 (06) 1646-1657
  • 73 Maurer MS, Kale P, Fontana M. et al; APOLLO-B Trial Investigators. Patisiran Treatment in Patients with Transthyretin Cardiac Amyloidosis. N Engl J Med 2023; 389 (17) 1553-1565 DOI: 10.1056/NEJMoa2300757.
  • 74 Adams D, Tournev IL, Taylor MS. et al; HELIOS-A Collaborators. Efficacy and safety of vutrisiran for patients with hereditary transthyretin-mediated amyloidosis with polyneuropathy: a randomized clinical trial. Amyloid 2023; 30 (01) 1-9 DOI: 10.1080/13506129.2022.2091985.
  • 75 Gillmore JD, Gane E, Taubel J. et al. Crispr-Cas9 in vivo gene editing for transthyretin amyloidosis. N Engl J Med 2021; 385 (06) 493-502 DOI: 10.1056/NEJMoa2107454.
  • 76 Gerischer LM, Scheibe F, Nümann A, Köhnlein M, Stölzel U, Meisel A. Acute porphyrias - A neurological perspective. Brain Behav 2021; 11 (11) e2389 DOI: 10.1002/brb3.2389.
  • 77 Zhang MM, Bahal R, Rasmussen TP, Manautou JE, Zhong XB. The growth of siRNA-based therapeutics: Updated clinical studies. Biochem Pharmacol 2021; 189: 114432
  • 78 Balwani M, Sardh E, Ventura P. et al; ENVISION Investigators. Phase 3 Trial of RNAi Therapeutic Givosiran for Acute Intermittent Porphyria. N Engl J Med 2020; 382 (24) 2289-2301
  • 79 Hoffman EP, Brown Jr RH, Kunkel LM. Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 1987; 51 (06) 919-928 DOI: 10.1016/0092-8674(87)90579-4.
  • 80 Crisafulli S, Sultana J, Fontana A, Salvo F, Messina S, Trifirò G. Global epidemiology of Duchenne muscular dystrophy: an updated systematic review and meta-analysis. Orphanet J Rare Dis 2020; 15 (01) 141 DOI: 10.1186/s13023-020-01430-8.
  • 81 Roberts RG, Coffey AJ, Bobrow M, Bentley DR. Exon structure of the human dystrophin gene. Genomics 1993; 16 (02) 536-538 DOI: 10.1006/geno.1993.1225.
  • 82 Saad FA, Siciliano G, Angelini C. Advances in Dystrophinopathy Diagnosis and Therapy. Biomolecules 2023; 13 (09) 1319 DOI: 10.3390/biom13091319.
  • 83 Monaco AP, Bertelson CJ, Liechti-Gallati S, Moser H, Kunkel LM. An explanation for the phenotypic differences between patients bearing partial deletions of the DMD locus. Genomics 1988; 2 (01) 90-95
  • 84 Araujo APQC, Saute JAM, Fortes CPDD. et al. Update of the Brazilian consensus recommendations on Duchenne muscular dystrophy. Arq Neuropsiquiatr 2023; 81 (01) 81-94 DOI: 10.1055/s-0043-1761466.
  • 85 Duan D. Systemic AAV Micro-dystrophin Gene Therapy for Duchenne Muscular Dystrophy. Mol Ther 2018; 26 (10) 2337-2356 DOI: 10.1016/j.ymthe.2018.07.011.
  • 86 Mendell JR, Sahenk Z, Lehman K. et al. Assessment of Systemic Delivery of rAAVrh74.MHCK7.micro-dystrophin in Children With Duchenne Muscular Dystrophy: A Nonrandomized Controlled Trial. JAMA Neurol 2020; 77 (09) 1122-1131 DOI: 10.1001/jamaneurol.2020.1484.
  • 87 Mendell JR, Sahenk Z, Lehman KJ. et al. Long-term safety and functional outcomes of delandistrogene moxeparvovec gene therapy in patients with Duchenne muscular dystrophy: A phase 1/2a nonrandomized trial. Muscle Nerve 2023; ••• DOI: 10.1002/mus.27955.
  • 88 Mendell JR, Shieh PB, McDonald CM. et al. Expression of SRP-9001 dystrophin and stabilization of motor function up to 2 years post-treatment with delandistrogene moxeparvovec gene therapy in individuals with Duchenne muscular dystrophy. Front Cell Dev Biol 2023b; 11: 1167762 DOI: 10.3389/fcell.2023.1167762.
  • 89 Zaidman CM, Proud CM, McDonald CM. et al. Delandistrogene Moxeparvovec Gene Therapy in Ambulatory Patients (Aged ≥4 to <8 Years) with Duchenne Muscular Dystrophy: 1-Year Interim Results from Study SRP-9001-103 (ENDEAVOR). Ann Neurol 2023; 94 (05) 955-968 DOI: 10.1002/ana.26755.
  • 90 Butterfield R, Shieh P, Yong F. et al. One year data from ambulatory boys in a phase 1b, open-label study of fordadistrogene movaparvovec (PF-06939926) for Duchenne muscular dystrophy (DMD). 2023. MDA Clinical & Scientific Conference.
  • 91 Dreghici RD. IGNITE DMD Phase I/II Study of SGT-001 Microdystrophin Gene Therapy for DMD: 2-Year Outcomes Update. 2022. MDA Clinical & Scientific Conference.
  • 92 Dreghici RD, Gonzalez P, Brown K, Morris C, Shieh P, Byrne B. 3-Year Outcomes Update in the IGNITE DMD Phase 1/2 Study of SGT-001 Microdystrophin Gene Therapy. 2023. MDA Clinical & Scientific Conference.
  • 93 Bönnemann CG, Belluscio BA, Braun S, Morris C, Singh T, Muntoni F. Dystrophin Immunity after Gene Therapy for Duchenne's Muscular Dystrophy. N Engl J Med 2023; 388 (24) 2294-2296 DOI: 10.1056/NEJMc2212912.
  • 94 Arnett ALH, Konieczny P, Ramos JN. et al. Adeno-associated viral (AAV) vectors do not efficiently target muscle satellite cells. Mol Ther Methods Clin Dev 2014; 1: 14038 DOI: 10.1038/mtm.2014.38.
  • 95 Aartsma-Rus A, Fokkema I, Verschuuren J. et al. Theoretic applicability of antisense-mediated exon skipping for Duchenne muscular dystrophy mutations. Hum Mutat 2009; 30 (03) 293-299 DOI: 10.1002/humu.20918.
  • 96 Mendell JR, Rodino-Klapac LR, Sahenk Z. et al; Eteplirsen Study Group. Eteplirsen for the treatment of Duchenne muscular dystrophy. Ann Neurol 2013; 74 (05) 637-647 DOI: 10.1002/ana.23982.
  • 97 Charleston JS, Schnell FJ, Dworzak J. et al. Eteplirsen treatment for Duchenne muscular dystrophy: Exon skipping and dystrophin production. Neurology 2018; 90 (24) e2146-e2154 DOI: 10.1212/WNL.0000000000005680.
  • 98 Mendell JR, Goemans N, Lowes LP. et al; Eteplirsen Study Group and Telethon Foundation DMD Italian Network. Longitudinal effect of eteplirsen versus historical control on ambulation in Duchenne muscular dystrophy. Ann Neurol 2016; 79 (02) 257-271 DOI: 10.1002/ana.24555.
  • 99 Mendell JR, Khan N, Sha N. et al; Eteplirsen Study Group. Comparison of Long-term Ambulatory Function in Patients with Duchenne Muscular Dystrophy Treated with Eteplirsen and Matched Natural History Controls. J Neuromuscul Dis 2021; 8 (04) 469-479 DOI: 10.3233/JND-200548.
  • 100 McDonald CM, Shieh PB, Abdel-Hamid HZ. et al; the Italian DMD Telethon Registry Study Group, Leuven NMRC Registry Investigators, CINRG Duchenne Natural History Investigators, and PROMOVI Trial Clinical Investigators. Open-Label Evaluation of Eteplirsen in Patients with Duchenne Muscular Dystrophy Amenable to Exon 51 Skipping: PROMOVI Trial. J Neuromuscul Dis 2021; 8 (06) 989-1001 DOI: 10.3233/JND-210643.
  • 101 Anwar S, Yokota T. Golodirsen for Duchenne muscular dystrophy. Drugs Today (Barc) 2020; 56 (08) 491-504 DOI: 10.1358/dot.2020.56.8.3159186.
  • 102 Frank DE, Schnell FJ, Akana C. et al; SKIP-NMD Study Group. Increased dystrophin production with golodirsen in patients with Duchenne muscular dystrophy. Neurology 2020; 94 (21) e2270-e2282 DOI: 10.1212/WNL.0000000000009233.
  • 103 Servais L, Mercuri E, Straub V. et al; SKIP-NMD Study Group. Long-Term Safety and Efficacy Data of Golodirsen in Ambulatory Patients with Duchenne Muscular Dystrophy Amenable to Exon 53 Skipping: A First-in-human, Multicenter, Two-Part, Open-Label, Phase 1/2 Trial. Nucleic Acid Ther 2022; 32 (01) 29-39 DOI: 10.1089/nat.2021.0043.
  • 104 Scaglioni D, Catapano F, Ellis M. et al. The administration of antisense oligonucleotide golodirsen reduces pathological regeneration in patients with Duchenne muscular dystrophy. Acta Neuropathol Commun 2021; 9 (01) 7 DOI: 10.1186/s40478-020-01106-1.
  • 105 Clemens PR, Rao VK, Connolly AM. et al; CINRG DNHS Investigators. Safety, tolerability, and efficacy of viltolarsen in boys with Duchenne muscular dystrophy amenable to exon 53 skipping: A phase 2 randomized clinical trial. JAMA Neurol 2020; 77 (08) 982-991
  • 106 Clemens PR, Rao VK, Connolly AM. et al; CINRG DNHS Investigators. Efficacy and Safety of Viltolarsen in Boys With Duchenne Muscular Dystrophy: Results From the Phase 2, Open-Label, 4-Year Extension Study. J Neuromuscul Dis 2023; 10 (03) 439-447 DOI: 10.3233/JND-221656.
  • 107 Roy B, Friesen WJ, Tomizawa Y. et al. Ataluren stimulates ribosomal selection of near-cognate tRNAs to promote nonsense suppression. Proc Natl Acad Sci U S A 2016; 113 (44) 12508-12513 DOI: 10.1073/pnas.1605336113.
  • 108 Bushby K, Finkel R, Wong B. et al; PTC124-GD-007-DMD STUDY GROUP. Ataluren treatment of patients with nonsense mutation dystrophinopathy. Muscle Nerve 2014; 50 (04) 477-487 DOI: 10.1002/mus.24332.
  • 109 McDonald CM, Campbell C, Torricelli RE. et al; Clinical Evaluator Training Group, ; ACT DMD Study Group. Ataluren in patients with nonsense mutation Duchenne muscular dystrophy (ACT DMD): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2017; 390 (10101): 1489-1498 DOI: 10.1016/S0140-6736(17)31611-2.
  • 110 Mercuri E, Osorio AN, Muntoni F. et al; STRIDE and CINRG DNHS investigators. Safety and effectiveness of ataluren in patients with nonsense mutation DMD in the STRIDE Registry compared with the CINRG Duchenne Natural History Study (2015-2022): 2022 interim analysis. J Neurol 2023; 270 (08) 3896-3913 DOI: 10.1007/s00415-023-11687-1.
  • 111 https://www.ema.europa.eu/en/news/ema-recommends-non-renewal-authorisation-duchenne-muscular-dystrophy-medicine-translarna