CC BY 4.0 · Pharmaceutical Fronts 2023; 05(04): e254-e273
DOI: 10.1055/s-0043-1777704
Review Article

Roles of Tumor-Associated Macrophages in Tumor Environment and Strategies for Targeting Therapy

Meng-Qi Liu#
1   Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People's Republic of China
,
Jia-Wei Zhang#
1   Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People's Republic of China
,
Jian-Wei Zhu
1   Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People's Republic of China
2   Jecho Laboratories, Inc., Maryland, United States
› Author Affiliations

Abstract

Tumor-associated macrophages (TAMs) constitute a significant component of the tumor microenvironment. This work reviewed the latest progress in comprehending the function of TAMs and their strategies for cancer therapy. TAMs are highly heterogeneous and plastic and exhibit different functional phenotypes in response to different signal stimuli. The emergence of single-cell technologies allows us to revisit their diversity in cancer. When their pro-inflammatory function is activated, antitumor TAMs support and activate adaptive immune cells to eliminate cancer cells through T cell-mediated killing. In the context of cancer, anti-inflammatory TAMs play a variety of pro-tumor functions, such as releasing cytokines to promote the recruitment of bone marrow cells, promoting tumor angiogenesis, and inhibiting cytotoxic T cell function. The plasticity of TAMs makes them a potential tumor therapeutic target, so finally, we updated strategies for targeting TAMs and the TAM-targeting agents currently being evaluated in clinical trials.

Supporting Information

Detailed information for representative clinical trials of TAM-targeting agents and strategies for anticancer therapy ([Table S1], available in the online version), and chemical structural and corresponding targets of small-molecule compounds mentioned in the text (BLZ945, pexidartinib, 3D-185, PF-04136309, maraviroc, BMS 813160, cediranib, rintatolimod) ([Table S2], available in the online version); as well as TAMs targeting-related studies including the significant progress, advantages, and limitations ([Table S3], available in the online version), are included in the Supporting Information ([Table S1]–[S3], available in the online version).


# These authors contributed to this work equally.


Supplementary Material



Publication History

Received: 10 September 2023

Accepted: 17 November 2023

Article published online:
13 December 2023

© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Bejarano L, Jordāo MJC, Joyce JA. Therapeutic targeting of the tumor microenvironment. Cancer Discov 2021; 11 (04) 933-959
  • 2 Mantovani A, Allavena P, Marchesi F, Garlanda C. Macrophages as tools and targets in cancer therapy. Nat Rev Drug Discov 2022; 21 (11) 799-820
  • 3 Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 2004; 25 (12) 677-686
  • 4 Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science 2011; 331 (6024) 1565-1570
  • 5 Locati M, Curtale G, Mantovani A. Diversity, mechanisms, and significance of macrophage plasticity. Annu Rev Pathol 2020; 15: 123-147
  • 6 Cassetta L, Pollard JW. Targeting macrophages: therapeutic approaches in cancer. Nat Rev Drug Discov 2018; 17 (12) 887-904
  • 7 Yin S, Huang J, Li Z. et al. The prognostic and clinicopathological significance of tumor-associated macrophages in patients with gastric cancer: a meta-analysis. PLoS One 2017; 12 (01) e0170042
  • 8 Mei J, Xiao Z, Guo C. et al. Prognostic impact of tumor-associated macrophage infiltration in non-small cell lung cancer: a systemic review and meta-analysis. Oncotarget 2016; 7 (23) 34217-34228
  • 9 Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P. Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol 2017; 14 (07) 399-416
  • 10 Pittet MJ, Michielin O, Migliorini D. Clinical relevance of tumour-associated macrophages. Nat Rev Clin Oncol 2022; 19 (06) 402-421
  • 11 Tauber AI. Metchnikoff and the phagocytosis theory. Nat Rev Mol Cell Biol 2003; 4 (11) 897-901
  • 12 Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol 2008; 8 (12) 958-969
  • 13 Auffray C, Fogg D, Garfa M. et al. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 2007; 317 (5838) 666-670
  • 14 Kubo H, Mensurado S, Gonçalves-Sousa N, Serre K, Silva-Santos B. Primary tumors limit metastasis formation through induction of IL15-mediated cross-talk between patrolling monocytes and NK cells. Cancer Immunol Res 2017; 5 (09) 812-820
  • 15 Schulz C, Gomez Perdiguero E, Chorro L. et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 2012; 336 (6077) 86-90
  • 16 Ginhoux F, Guilliams M. Tissue-resident macrophage ontogeny and homeostasis. Immunity 2016; 44 (03) 439-449
  • 17 Ginhoux F, Greter M, Leboeuf M. et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 2010; 330 (6005) 841-845
  • 18 Merad M, Manz MG, Karsunky H. et al. Langerhans cells renew in the skin throughout life under steady-state conditions. Nat Immunol 2002; 3 (12) 1135-1141
  • 19 Guilliams M, De Kleer I, Henri S. et al. Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF. J Exp Med 2013; 210 (10) 1977-1992
  • 20 Yona S, Kim KW, Wolf Y. et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 2013; 38 (01) 79-91
  • 21 Gomez Perdiguero E, Klapproth K, Schulz C. et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 2015; 518 (7540) 547-551
  • 22 Bain CC, Bravo-Blas A, Scott CL. et al. Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice. Nat Immunol 2014; 15 (10) 929-937
  • 23 Tamoutounour S, Guilliams M, Montanana Sanchis F. et al. Origins and functional specialization of macrophages and of conventional and monocyte-derived dendritic cells in mouse skin. Immunity 2013; 39 (05) 925-938
  • 24 Epelman S, Lavine KJ, Beaudin AE. et al. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity 2014; 40 (01) 91-104
  • 25 Calderon B, Carrero JA, Ferris ST. et al. The pancreas anatomy conditions the origin and properties of resident macrophages. J Exp Med 2015; 212 (10) 1497-1512
  • 26 Paolicelli RC, Bolasco G, Pagani F. et al. Synaptic pruning by microglia is necessary for normal brain development. Science 2011; 333 (6048) 1456-1458
  • 27 Schafer DP, Lehrman EK, Kautzman AG. et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 2012; 74 (04) 691-705
  • 28 Klein I, Cornejo JC, Polakos NK. et al. Kupffer cell heterogeneity: functional properties of bone marrow derived and sessile hepatic macrophages. Blood 2007; 110 (12) 4077-4085
  • 29 Pollard JW. Trophic macrophages in development and disease. Nat Rev Immunol 2009; 9 (04) 259-270
  • 30 Biswas SK, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol 2010; 11 (10) 889-896
  • 31 Dale DC, Boxer L, Liles WC. The phagocytes: neutrophils and monocytes. Blood 2008; 112 (04) 935-945
  • 32 Spiller KL, Anfang RR, Spiller KJ. et al. The role of macrophage phenotype in vascularization of tissue engineering scaffolds. Biomaterials 2014; 35 (15) 4477-4488
  • 33 Tidball JG, Villalta SA. Regulatory interactions between muscle and the immune system during muscle regeneration. Am J Physiol Regul Integr Comp Physiol 2010; 298 (05) R1173-R1187
  • 34 Martinez FO, Sica A, Mantovani A, Locati M. Macrophage activation and polarization. Front Biosci 2008; 13: 453-461
  • 35 Leader AM, Grout JA, Maier BB. et al. Single-cell analysis of human non-small cell lung cancer lesions refines tumor classification and patient stratification. Cancer Cell 2021; 39 (12) 1594-1609.e12
  • 36 Zilionis R, Engblom C, Pfirschke C. et al. Single-cell transcriptomics of human and mouse lung cancers reveals conserved myeloid populations across individuals and species. Immunity 2019; 50 (05) 1317-1334.e10
  • 37 Braun DA, Street K, Burke KP. et al. Progressive immune dysfunction with advancing disease stage in renal cell carcinoma. Cancer Cell 2021; 39 (05) 632.e8-648.e8
  • 38 Wu SZ, Al-Eryani G, Roden DL. et al. A single-cell and spatially resolved atlas of human breast cancers. Nat Genet 2021; 53 (09) 1334-1347
  • 39 Pombo Antunes AR, Scheyltjens I, Lodi F. et al. Single-cell profiling of myeloid cells in glioblastoma across species and disease stage reveals macrophage competition and specialization. Nat Neurosci 2021; 24 (04) 595-610
  • 40 Mulder K, Patel AA, Kong WT. et al. Cross-tissue single-cell landscape of human monocytes and macrophages in health and disease. Immunity 2021; 54 (08) 1883-1900.e5
  • 41 Ma RY, Black A, Qian BZ. Macrophage diversity in cancer revisited in the era of single-cell omics. Trends Immunol 2022; 43 (07) 546-563
  • 42 Loyher PL, Hamon P, Laviron M. et al. Macrophages of distinct origins contribute to tumor development in the lung. J Exp Med 2018; 215 (10) 2536-2553
  • 43 Sharma SK, Chintala NK, Vadrevu SK, Patel J, Karbowniczek M, Markiewski MM. Pulmonary alveolar macrophages contribute to the premetastatic niche by suppressing antitumor T cell responses in the lungs. J Immunol 2015; 194 (11) 5529-5538
  • 44 Li D, Ji H, Niu X. et al. Tumor-associated macrophages secrete CC-chemokine ligand 2 and induce tamoxifen resistance by activating PI3K/Akt/mTOR in breast cancer. Cancer Sci 2020; 111 (01) 47-58
  • 45 Steeg PS. Targeting metastasis. Nat Rev Cancer 2016; 16 (04) 201-218
  • 46 Helm O, Held-Feindt J, Grage-Griebenow E. et al. Tumor-associated macrophages exhibit pro- and anti-inflammatory properties by which they impact on pancreatic tumorigenesis. Int J Cancer 2014; 135 (04) 843-861
  • 47 Bonde AK, Tischler V, Kumar S, Soltermann A, Schwendener RA. Intratumoral macrophages contribute to epithelial-mesenchymal transition in solid tumors. BMC Cancer 2012; 12: 35
  • 48 Barkan D, Green JE, Chambers AF. Extracellular matrix: a gatekeeper in the transition from dormancy to metastatic growth. Eur J Cancer 2010; 46 (07) 1181-1188
  • 49 Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 2010; 141 (01) 52-67
  • 50 Tekin C, Aberson HL, Waasdorp C. et al. Macrophage-secreted MMP9 induces mesenchymal transition in pancreatic cancer cells via PAR1 activation. Cell Oncol (Dordr) 2020; 43 (06) 1161-1174
  • 51 Gocheva V, Wang HW, Gadea BB. et al. IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes Dev 2010; 24 (03) 241-255
  • 52 Wei C, Yang C, Wang S. et al. Crosstalk between cancer cells and tumor associated macrophages is required for mesenchymal circulating tumor cell-mediated colorectal cancer metastasis. Mol Cancer 2019; 18 (01) 64
  • 53 Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144 (05) 646-674
  • 54 Lin EY, Pollard JW. Tumor-associated macrophages press the angiogenic switch in breast cancer. Cancer Res 2007; 67 (11) 5064-5066
  • 55 Hughes R, Qian BZ, Rowan C. et al. Perivascular M2 macrophages stimulate tumor relapse after chemotherapy. Cancer Res 2015; 75 (17) 3479-3491
  • 56 De Palma M, Venneri MA, Galli R. et al. Tie2 identifies a hematopoietic monocytes required for tumor lineage of proangiogenic vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 2005; 8 (03) 211-226
  • 57 Harney AS, Karagiannis GS, Pignatelli J. et al. The selective Tie2 inhibitor rebastinib blocks recruitment and function of Tie2Hi macrophages in breast cancer and pancreatic neuroendocrine tumors. Mol Cancer Ther 2017; 16 (11) 2486-2501
  • 58 Mazzieri R, Pucci F, Moi D. et al. Targeting the ANG2/TIE2 axis inhibits tumor growth and metastasis by impairing angiogenesis and disabling rebounds of proangiogenic myeloid cells. Cancer Cell 2011; 19 (04) 512-526
  • 59 Cheng S, Li Z, Gao R. et al. A pan-cancer single-cell transcriptional atlas of tumor infiltrating myeloid cells. Cell 2021; 184 (03) 792-809.e23
  • 60 Kloosterman DJ, Akkari L. Macrophages at the interface of the co-evolving cancer ecosystem. Cell 2023; 186 (08) 1627-1651
  • 61 Komohara Y, Fujiwara Y, Ohnishi K, Takeya M. Tumor-associated macrophages: potential therapeutic targets for anti-cancer therapy. Adv Drug Deliv Rev 2016; 99 (Pt B): 180-185
  • 62 Noman MZ, Desantis G, Janji B. et al. PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med 2014; 211 (05) 781-790
  • 63 Kuang DM, Zhao Q, Peng C. et al. Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1. J Exp Med 2009; 206 (06) 1327-1337
  • 64 Bloch O, Crane CA, Kaur R, Safaee M, Rutkowski MJ, Parsa AT. Gliomas promote immunosuppression through induction of B7-H1 expression in tumor-associated macrophages. Clin Cancer Res 2013; 19 (12) 3165-3175
  • 65 Wang L, Rubinstein R, Lines JL. et al. VISTA, a novel mouse Ig superfamily ligand that negatively regulates T cell responses. J Exp Med 2011; 208 (03) 577-592
  • 66 Curiel TJ, Coukos G, Zou L. et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 2004; 10 (09) 942-949
  • 67 Tanaka A, Sakaguchi S. Regulatory T cells in cancer immunotherapy. Cell Res 2017; 27 (01) 109-118
  • 68 Liu C, Chikina M, Deshpande R. et al. Treg cells promote the SREBP1-dependent metabolic fitness of tumor-promoting macrophages via repression of CD8+ T cell-derived interferon-γ. Immunity 2019; 51 (02) 381.e6-397.e6
  • 69 Kersten K, Hu KH, Combes AJ. et al. Spatiotemporal co-dependency between macrophages and exhausted CD8+ T cells in cancer. Cancer Cell 2022; 40 (06) 624-638.e9
  • 70 Bi K, He MX, Bakouny Z. et al. Tumor and immune reprogramming during immunotherapy in advanced renal cell carcinoma. Cancer Cell 2021; 39 (05) 649-661.e5
  • 71 Gabrilovich DI. Myeloid-derived suppressor cells. Cancer Immunol Res 2017; 5 (01) 3-8
  • 72 Corzo CA, Condamine T, Lu L. et al. HIF-1α regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J Exp Med 2010; 207 (11) 2439-2453
  • 73 Kumar V, Cheng P, Condamine T. et al. CD45 phosphatase inhibits STAT3 transcription factor activity in myeloid cells and promotes tumor-associated macrophage differentiation. Immunity 2016; 44 (02) 303-315
  • 74 Murdoch C, Giannoudis A, Lewis CE. Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood 2004; 104 (08) 2224-2234
  • 75 Kumar V, Patel S, Tcyganov E, Gabrilovich DI. The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol 2016; 37 (03) 208-220
  • 76 Gabrilovich DI, Ostrand-Rosenberg S, Bronte V. Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 2012; 12 (04) 253-268
  • 77 Han N, Baghdadi M, Ishikawa K. et al. Enhanced IL-34 expression in Nivolumab-resistant metastatic melanoma. Inflamm Regen 2018; 38: 3
  • 78 Kumar V, Donthireddy L, Marvel D. et al. Cancer-associated fibroblasts neutralize the anti-tumor effect of CSF1 receptor blockade by inducing PMN-MDSC infiltration of tumors. Cancer Cell 2017; 32 (05) 654.e5-668.e5
  • 79 Kai K, Iwamoto T, Zhang D. et al. CSF-1/CSF-1R axis is associated with epithelial/mesenchymal hybrid phenotype in epithelial-like inflammatory breast cancer. Sci Rep 2018; 8 (01) 9427
  • 80 Baghdadi M, Endo H, Takano A. et al. High co-expression of IL-34 and M-CSF correlates with tumor progression and poor survival in lung cancers. Sci Rep 2018; 8 (01) 418
  • 81 Boulakirba S, Pfeifer A, Mhaidly R. et al. IL-34 and CSF-1 display an equivalent macrophage differentiation ability but a different polarization potential. Sci Rep 2018; 8 (01) 256
  • 82 Van Overmeire E, Stijlemans B, Heymann F. et al. M-CSF and GM-CSF receptor signaling differentially regulate monocyte maturation and macrophage polarization in the tumor microenvironment. Cancer Res 2016; 76 (01) 35-42
  • 83 Ao JY, Zhu XD, Chai ZT. et al. Colony-stimulating factor 1 receptor blockade inhibits tumor growth by altering the polarization of tumor-associated macrophages in hepatocellular carcinoma. Mol Cancer Ther 2017; 16 (08) 1544-1554
  • 84 Li M, Li M, Yang Y. et al. Remodeling tumor immune microenvironment via targeted blockade of PI3K-γ and CSF-1/CSF-1R pathways in tumor associated macrophages for pancreatic cancer therapy. J Control Release 2020; 321: 23-35
  • 85 Neubert NJ, Schmittnaegel M, Bordry N. et al. T cell-induced CSF1 promotes melanoma resistance to PD1 blockade. Sci Transl Med 2018; 10 (436) eaan3311
  • 86 Niehus SE, Tran DDH, Mischak M, Koch A. Colony-stimulating factor-1 receptor provides a growth advantage in epithelial cancer cell line A431 in the presence of epidermal growth factor receptor inhibitor gefitinib. Cell Signal 2018; 51: 191-198
  • 87 Ide H, Seligson DB, Memarzadeh S. et al. Expression of colony-stimulating factor 1 receptor during prostate development and prostate cancer progression. Proc Natl Acad Sci U S A 2002; 99 (22) 14404-14409
  • 88 Richardsen E, Uglehus RD, Due J, Busch C, Busund LT. The prognostic impact of M-CSF, CSF-1 receptor, CD68 and CD3 in prostatic carcinoma. Histopathology 2008; 53 (01) 30-38
  • 89 Lin EY, Nguyen AV, Russell RG, Pollard JW. Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med 2001; 193 (06) 727-740
  • 90 Kluger HM, Dolled-Filhart M, Rodov S, Kacinski BM, Camp RL, Rimm DL. Macrophage colony-stimulating factor-1 receptor expression is associated with poor outcome in breast cancer by large cohort tissue microarray analysis. Clin Cancer Res 2004; 10 (1, Pt 1): 173-177
  • 91 Webb MW, Sun J, Sheard MA. et al. Colony stimulating factor 1 receptor blockade improves the efficacy of chemotherapy against human neuroblastoma in the absence of T lymphocytes. Int J Cancer 2018; 143 (06) 1483-1493
  • 92 Dammeijer F, Lievense LA, Kaijen-Lambers ME. et al. Depletion of tumor-associated macrophages with a CSF-1R kinase inhibitor enhances antitumor immunity and survival induced by DC immunotherapy. Cancer Immunol Res 2017; 5 (07) 535-546
  • 93 Shi G, Yang Q, Zhang Y. et al. Modulating the tumor microenvironment via oncolytic viruses and CSF-1R inhibition synergistically enhances anti-PD-1 immunotherapy. Mol Ther 2019; 27 (01) 244-260
  • 94 Pyonteck SM, Akkari L, Schuhmacher AJ. et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med 2013; 19 (10) 1264-1272
  • 95 Yan D, Kowal J, Akkari L. et al. Inhibition of colony stimulating factor-1 receptor abrogates microenvironment-mediated therapeutic resistance in gliomas. Oncogene 2017; 36 (43) 6049-6058
  • 96 Peng X, Hou P, Chen Y. et al. Preclinical evaluation of 3D185, a novel potent inhibitor of FGFR1/2/3 and CSF-1R, in FGFR-dependent and macrophage-dominant cancer models. J Exp Clin Cancer Res 2019; 38 (01) 372
  • 97 Schaer D, Li YX, Dobkin J. et al Modulating the intra-tumor immune balance through combinatorial blockade of CSF-1R and PD-L1 enhances anti-tumor efficacy. Paper presented at: 31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016): part two. J Immunother Cancer 2016; 4 (Suppl 1): 73
  • 98 Salvagno C, Ciampricotti M, Tuit S. et al. Therapeutic targeting of macrophages enhances chemotherapy efficacy by unleashing type I interferon response. Nat Cell Biol 2019; 21 (04) 511-521
  • 99 Saung MT, Muth S, Ding D. et al. Targeting myeloid-inflamed tumor with anti-CSF-1R antibody expands CD137+ effector T-cells in the murine model of pancreatic cancer. J Immunother Cancer 2018; 6 (01) 118
  • 100 Papadopoulos KP, Gluck L, Martin LP. et al. First-in-human study of AMG 820, a monoclonal anti-colony-stimulating factor 1 receptor antibody, in patients with advanced solid tumors. Clin Cancer Res 2017; 23 (19) 5703-5710
  • 101 Wainberg Z, Piha-Paul S, Luke J. et al First-in-human phase 1 dose escalation and expansion of a novel combination, anti-CSF-1 receptor (cabiralizumab) plus anti-PD-1 (nivolumab), in patients with advanced solid tumors. Paper presented at: 32nd Annual Meeting and Pre-Conference Programs of the Society for Immunotherapy of Cancer (SITC 2017): Late-Breaking Abstracts. J Immunother Cancer 2017; 5 (Suppl 3): 89
  • 102 Ries CH, Cannarile MA, Hoves S. et al. Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell 2014; 25 (06) 846-859
  • 103 Lamb YN. Pexidartinib: first approval. Drugs 2019; 79 (16) 1805-1812
  • 104 Gomez-Roca CA, Italiano A, Le Tourneau C. et al. Phase I study of emactuzumab single agent or in combination with paclitaxel in patients with advanced/metastatic solid tumors reveals depletion of immunosuppressive M2-like macrophages. Ann Oncol 2019; 30 (08) 1381-1392
  • 105 Wesolowski R, Sharma N, Reebel L. et al. Phase Ib study of the combination of pexidartinib (PLX3397), a CSF-1R inhibitor, and paclitaxel in patients with advanced solid tumors. Ther Adv Med Oncol 2019; 11: 1758835919854238
  • 106 Pradel LP, Ooi CH, Romagnoli S. et al. Macrophage susceptibility to emactuzumab (RG7155) treatment. Mol Cancer Ther 2016; 15 (12) 3077-3086
  • 107 Quail DF, Bowman RL, Akkari L. et al. The tumor microenvironment underlies acquired resistance to CSF-1R inhibition in gliomas. Science 2016; 352 (6288) aad3018
  • 108 Draghiciu O, Lubbers J, Nijman HW, Daemen T. Myeloid derived suppressor cells-an overview of combat strategies to increase immunotherapy efficacy. OncoImmunology 2015; 4 (01) e954829
  • 109 Gyori D, Lim EL, Grant FM. et al. Compensation between CSF1R+ macrophages and Foxp3+ Treg cells drives resistance to tumor immunotherapy. JCI Insight 2018; 3 (11) e120631
  • 110 Beffinger M, Tallón de Lara P, Tugues S. et al. CSF1R-dependent myeloid cells are required for NK–mediated control of metastasis. JCI Insight 2018; 3 (10) e97792
  • 111 MacDonald KP, Rowe V, Bofinger HM. et al. The colony-stimulating factor 1 receptor is expressed on dendritic cells during differentiation and regulates their expansion. J Immunol 2005; 175 (03) 1399-1405
  • 112 Percin GI, Eitler J, Kranz A. et al. CSF1R regulates the dendritic cell pool size in adult mice via embryo-derived tissue-resident macrophages. Nat Commun 2018; 9 (01) 5279
  • 113 Argyle D, Kitamura T. Targeting macrophage-recruiting chemokines as a novel therapeutic strategy to prevent the progression of solid tumors. Front Immunol 2018; 9: 2629
  • 114 van Deventer HW, Palmieri DA, Wu QP, McCook EC, Serody JS. Circulating fibrocytes prepare the lung for cancer metastasis by recruiting Ly-6C+ monocytes via CCL2. J Immunol 2013; 190 (09) 4861-4867
  • 115 Ren G, Zhao X, Wang Y. et al. CCR2-dependent recruitment of macrophages by tumor-educated mesenchymal stromal cells promotes tumor development and is mimicked by TNFα. Cell Stem Cell 2012; 11 (06) 812-824
  • 116 Ren G, Liu Y, Zhao X. et al. Tumor resident mesenchymal stromal cells endow naïve stromal cells with tumor-promoting properties. Oncogene 2014; 33 (30) 4016-4020
  • 117 Szekely B, Bossuyt V, Li X. et al. Immunological differences between primary and metastatic breast cancer. Ann Oncol 2018; 29 (11) 2232-2239
  • 118 Brummer G, Fang W, Smart C. et al. CCR2 signaling in breast carcinoma cells promotes tumor growth and invasion by promoting CCL2 and suppressing CD154 effects on the angiogenic and immune microenvironments. Oncogene 2020; 39 (11) 2275-2289
  • 119 Fujita S, Ikeda T. The CCL2-CCR2 axis in lymph node metastasis from oral squamous cell carcinoma: an immunohistochemical study. J Oral Maxillofac Surg 2017; 75 (04) 742-749
  • 120 Wang Z, Xie H, Zhou L. et al. CCL2/CCR2 axis is associated with postoperative survival and recurrence of patients with non-metastatic clear-cell renal cell carcinoma. Oncotarget 2016; 7 (32) 51525-51534
  • 121 Grossman JG, Nywening TM, Belt BA. et al. Recruitment of CCR2+ tumor associated macrophage to sites of liver metastasis confers a poor prognosis in human colorectal cancer. OncoImmunology 2018; 7 (09) e1470729
  • 122 Yang H, Zhang Q, Xu M. et al. CCL2-CCR2 axis recruits tumor associated macrophages to induce immune evasion through PD-1 signaling in esophageal carcinogenesis. Mol Cancer 2020; 19 (01) 41
  • 123 Brummer G, Acevedo DS, Hu Q. et al. Chemokine signaling facilitates early-stage breast cancer survival and invasion through fibroblast-dependent mechanisms. Mol Cancer Res 2018; 16 (02) 296-308
  • 124 Schmall A, Al-Tamari HM, Herold S. et al. Macrophage and cancer cell cross-talk via CCR2 and CX3CR1 is a fundamental mechanism driving lung cancer. Am J Respir Crit Care Med 2015; 191 (04) 437-447
  • 125 Wu X, Singh R, Hsu DK. et al. A small molecule CCR2 antagonist depletes tumor macrophages and synergizes with anti-PD-1 in a murine model of cutaneous T-cell lymphoma (CTCL). J Invest Dermatol 2020; 140 (07) 1390-1400.e4
  • 126 Moisan F, Francisco EB, Brozovic A. et al. Enhancement of paclitaxel and carboplatin therapies by CCL2 blockade in ovarian cancers. Mol Oncol 2014; 8 (07) 1231-1239
  • 127 Kalbasi A, Komar C, Tooker GM. et al. Tumor-derived CCL2 mediates resistance to radiotherapy in pancreatic ductal adenocarcinoma. Clin Cancer Res 2017; 23 (01) 137-148
  • 128 Noel M, O'Reilly EM, Wolpin BM. et al. Phase 1b study of a small molecule antagonist of human chemokine (C-C motif) receptor 2 (PF-04136309) in combination with nab-paclitaxel/gemcitabine in first-line treatment of metastatic pancreatic ductal adenocarcinoma. Invest New Drugs 2020; 38 (03) 800-811
  • 129 Nywening TM, Wang-Gillam A, Sanford DE. et al. Targeting tumour-associated macrophages with CCR2 inhibition in combination with FOLFIRINOX in patients with borderline resectable and locally advanced pancreatic cancer: a single-centre, open-label, dose-finding, non-randomised, phase 1b trial. Lancet Oncol 2016; 17 (05) 651-662
  • 130 Sanford DE, Belt BA, Panni RZ. et al. Inflammatory monocyte mobilization decreases patient survival in pancreatic cancer: a role for targeting the CCL2/CCR2 axis. Clin Cancer Res 2013; 19 (13) 3404-3415
  • 131 Sandhu SK, Papadopoulos K, Fong PC. et al. A first-in-human, first-in-class, phase I study of carlumab (CNTO 888), a human monoclonal antibody against CC-chemokine ligand 2 in patients with solid tumors. Cancer Chemother Pharmacol 2013; 71 (04) 1041-1050
  • 132 Pienta KJ, Machiels JP, Schrijvers D. et al. Phase 2 study of carlumab (CNTO 888), a human monoclonal antibody against CC-chemokine ligand 2 (CCL2), in metastatic castration-resistant prostate cancer. Invest New Drugs 2013; 31 (03) 760-768
  • 133 Brana I, Calles A, LoRusso PM. et al. Carlumab, an anti-C-C chemokine ligand 2 monoclonal antibody, in combination with four chemotherapy regimens for the treatment of patients with solid tumors: an open-label, multicenter phase 1b study. Target Oncol 2015; 10 (01) 111-123
  • 134 Yao M, Smart C, Hu Q, Cheng N. Continuous delivery of neutralizing antibodies elevate CCL2 levels in mice bearing MCF10CA1d breast tumor xenografts. Transl Oncol 2017; 10 (05) 734-743
  • 135 Nywening TM, Belt BA, Cullinan DR. et al. Targeting both tumour-associated CXCR2+ neutrophils and CCR2+ macrophages disrupts myeloid recruitment and improves chemotherapeutic responses in pancreatic ductal adenocarcinoma. Gut 2018; 67 (06) 1112-1123
  • 136 Long KB, Gladney WL, Tooker GM, Graham K, Fraietta JA, Beatty GL. IFNγ and CCL2 cooperate to redirect tumor-infiltrating monocytes to degrade fibrosis and enhance chemotherapy efficacy in pancreatic carcinoma. Cancer Discov 2016; 6 (04) 400-413
  • 137 Wang SW, Liu SC, Sun HL. et al. CCL5/CCR5 axis induces vascular endothelial growth factor-mediated tumor angiogenesis in human osteosarcoma microenvironment. Carcinogenesis 2015; 36 (01) 104-114
  • 138 Tang S, Xiang T, Huang S. et al. Ovarian cancer stem-like cells differentiate into endothelial cells and participate in tumor angiogenesis through autocrine CCL5 signaling. Cancer Lett 2016; 376 (01) 137-147
  • 139 Casagrande N, Borghese C, Visser L, Mongiat M, Colombatti A, Aldinucci D. CCR5 antagonism by maraviroc inhibits Hodgkin lymphoma microenvironment interactions and xenograft growth. Haematologica 2019; 104 (03) 564-575
  • 140 Kranjc MK, Novak M, Pestell RG, Lah TT. Cytokine CCL5 and receptor CCR5 axis in glioblastoma multiforme. Radiol Oncol 2019; 53 (04) 397-406
  • 141 Kaplon H, Muralidharan M, Schneider Z, Reichert JM. Antibodies to watch in 2020. MAbs 2020; 12 (01) 1703531
  • 142 Lapeyre-Prost A, Terme M, Pernot S. et al. Immunomodulatory activity of VEGF in cancer. Int Rev Cell Mol Biol 2017; 330: 295-342
  • 143 Kim I, Kim HG, So JN, Kim JH, Kwak HJ, Koh GY. Angiopoietin-1 regulates endothelial cell survival through the phosphatidylinositol 3′-Kinase/Akt signal transduction pathway. Circ Res 2000; 86 (01) 24-29
  • 144 Huang H, Bhat A, Woodnutt G, Lappe R. Targeting the ANGPT-TIE2 pathway in malignancy. Nat Rev Cancer 2010; 10 (08) 575-585
  • 145 Turrini R, Pabois A, Xenarios I, Coukos G, Delaloye JF, Doucey MA. TIE-2 expressing monocytes in human cancers. OncoImmunology 2017; 6 (04) e1303585
  • 146 Steinberger KJ, Forget MA, Bobko AA. et al. Hypoxia-inducible factor α subunits regulate Tie2-expressing macrophages that influence tumor oxygen and perfusion in murine breast cancer. J Immunol 2020; 205 (08) 2301-2311
  • 147 Chen L, Li J, Wang F. et al. Tie2 expression on macrophages is required for blood vessel reconstruction and tumor relapse after chemotherapy. Cancer Res 2016; 76 (23) 6828-6838
  • 148 Bergers G, Hanahan D. Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 2008; 8 (08) 592-603
  • 149 Coffelt SB, Tal AO, Scholz A. et al. Angiopoietin-2 regulates gene expression in TIE2-expressing monocytes and augments their inherent proangiogenic functions. Cancer Res 2010; 70 (13) 5270-5280
  • 150 Peterson TE, Kirkpatrick ND, Huang Y. et al. Dual inhibition of Ang-2 and VEGF receptors normalizes tumor vasculature and prolongs survival in glioblastoma by altering macrophages. Proc Natl Acad Sci U S A 2016; 113 (16) 4470-4475
  • 151 Lobov IB, Brooks PC, Lang RA. Angiopoietin-2 displays VEGF-dependent modulation of capillary structure and endothelial cell survival in vivo. Proc Natl Acad Sci U S A 2002; 99 (17) 11205-11210
  • 152 Cattin S, Fellay B, Pradervand S. et al. Bevacizumab specifically decreases elevated levels of circulating KIT+CD11b+ cells and IL-10 in metastatic breast cancer patients. Oncotarget 2016; 7 (10) 11137-11150
  • 153 Chae SS, Kamoun WS, Farrar CT. et al. Angiopoietin-2 interferes with anti-VEGFR2-induced vessel normalization and survival benefit in mice bearing gliomas. Clin Cancer Res 2010; 16 (14) 3618-3627
  • 154 Kloepper J, Riedemann L, Amoozgar Z. et al. Ang-2/VEGF bispecific antibody reprograms macrophages and resident microglia to anti-tumor phenotype and prolongs glioblastoma survival. Proc Natl Acad Sci U S A 2016; 113 (16) 4476-4481
  • 155 Hidalgo M, Martinez-Garcia M, Le Tourneau C. et al. First-in-human phase i study of single-agent vanucizumab, a first-in-class bispecific anti-angiopoietin-2/anti-VEGF-A antibody, in adult patients with advanced solid tumors. Clin Cancer Res 2018; 24 (07) 1536-1545
  • 156 Scholz A, Harter PN, Cremer S. et al. Endothelial cell-derived angiopoietin-2 is a therapeutic target in treatment-naive and bevacizumab-resistant glioblastoma. EMBO Mol Med 2016; 8 (01) 39-57
  • 157 Bendell JC, Sauri T, Gracián AC. et al; McCAVE Study Group. The McCAVE trial: vanucizumab plus mFOLFOX-6 versus bevacizumab plus mFOLFOX-6 in patients with previously untreated metastatic colorectal carcinoma (mCRC). Oncologist 2020; 25 (03) e451-e459
  • 158 Martin-Liberal J, Hollebecque A, Aftimos P. et al. First-in-human, dose-escalation, phase 1 study of anti-angiopoietin-2 LY3127804 as monotherapy and in combination with ramucirumab in patients with advanced solid tumours. Br J Cancer 2020; 123 (08) 1235-1243
  • 159 Hyman DM, Rizvi N, Natale R. et al. Phase I study of MEDI3617, a selective angiopoietin-2 inhibitor alone and combined with carboplatin/paclitaxel, paclitaxel, or bevacizumab for advanced solid tumors. Clin Cancer Res 2018; 24 (12) 2749-2757
  • 160 Han S, Lee SJ, Kim KE. et al. Amelioration of sepsis by TIE2 activation-induced vascular protection. Sci Transl Med 2016; 8 (335) 335ra55
  • 161 Park JS, Kim IK, Han S. et al. Normalization of tumor vessels by Tie2 activation and Ang2 inhibition enhances drug delivery and produces a favorable tumor microenvironment. Cancer Cell 2016; 30 (06) 953-967
  • 162 Fabriek BO, van Bruggen R, Deng DM. et al. The macrophage scavenger receptor CD163 functions as an innate immune sensor for bacteria. Blood 2009; 113 (04) 887-892
  • 163 Graversen JH, Madsen M, Moestrup SK. CD163: a signal receptor scavenging haptoglobin-hemoglobin complexes from plasma. Int J Biochem Cell Biol 2002; 34 (04) 309-314
  • 164 Foks M, Wągrowska-Danilewicz M, Danilewicz M, Bonczysta M, Olborski B, Stasikowska-Kanicka O. The number of CD163 positive macrophages is associatedwith more advanced skin melanomas, microvessels density and patient prognosis. Pol J Pathol 2019; 70 (03) 217-222
  • 165 Chen T, Chen J, Zhu Y. et al. CD163, a novel therapeutic target, regulates the proliferation and stemness of glioma cells via casein kinase 2. Oncogene 2019; 38 (08) 1183-1199
  • 166 Maniecki MB, Etzerodt A, Ulhøi BP. et al. Tumor-promoting macrophages induce the expression of the macrophage-specific receptor CD163 in malignant cells. Int J Cancer 2012; 131 (10) 2320-2331
  • 167 Graversen JH, Svendsen P, Dagnæs-Hansen F. et al. Targeting the hemoglobin scavenger receptor CD163 in macrophages highly increases the anti-inflammatory potency of dexamethasone. Mol Ther 2012; 20 (08) 1550-1558
  • 168 Etzerodt A, Maniecki MB, Graversen JH, Møller HJ, Torchilin VP, Moestrup SK. Efficient intracellular drug-targeting of macrophages using stealth liposomes directed to the hemoglobin scavenger receptor CD163. J Control Release 2012; 160 (01) 72-80
  • 169 Jackaman C, Yeoh TL, Acuil ML, Gardner JK, Nelson DJ. Murine mesothelioma induces locally-proliferating IL-10(+)TNF-α(+)CD206(-)CX3CR1(+) M3 macrophages that can be selectively depleted by chemotherapy or immunotherapy. OncoImmunology 2016; 5 (06) e1173299
  • 170 de Silva S, Fromm G, Shuptrine CW. et al. CD40 enhances type i interferon responses downstream of CD47 blockade, bridging innate and adaptive immunity. Cancer Immunol Res 2020; 8 (02) 230-245
  • 171 Vitale LA, Thomas LJ, He LZ. et al. Development of CDX-1140, an agonist CD40 antibody for cancer immunotherapy. Cancer Immunol Immunother 2019; 68 (02) 233-245
  • 172 Beatty GL, Chiorean EG, Fishman MP. et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science 2011; 331 (6024) 1612-1616
  • 173 Ngiow SF, Young A, Blake SJ. et al. Agonistic CD40 mAb-driven IL12 reverses resistance to anti-PD1 in a T-cell-rich tumor. Cancer Res 2016; 76 (21) 6266-6277
  • 174 Ma HS, Poudel B, Torres ER. et al. A CD40 agonist and PD-1 antagonist antibody reprogram the microenvironment of nonimmunogenic tumors to allow T-cell-mediated anticancer activity. Cancer Immunol Res 2019; 7 (03) 428-442
  • 175 Zippelius A, Schreiner J, Herzig P, Müller P. Induced PD-L1 expression mediates acquired resistance to agonistic anti-CD40 treatment. Cancer Immunol Res 2015; 3 (03) 236-244
  • 176 Bajor DL, Mick R, Riese MJ. et al. Long-term outcomes of a phase I study of agonist CD40 antibody and CTLA-4 blockade in patients with metastatic melanoma. OncoImmunology 2018; 7 (10) e1468956
  • 177 Buhtoiarov IN, Lum H, Berke G, Paulnock DM, Sondel PM, Rakhmilevich AL. CD40 ligation activates murine macrophages via an IFN-gamma-dependent mechanism resulting in tumor cell destruction in vitro. J Immunol 2005; 174 (10) 6013-6022
  • 178 Kashyap AS, Schmittnaegel M, Rigamonti N. et al. Optimized antiangiogenic reprogramming of the tumor microenvironment potentiates CD40 immunotherapy. Proc Natl Acad Sci U S A 2020; 117 (01) 541-551
  • 179 Hoves S, Ooi CH, Wolter C. et al. Rapid activation of tumor-associated macrophages boosts preexisting tumor immunity. J Exp Med 2018; 215 (03) 859-876
  • 180 Wiehagen KR, Girgis NM, Yamada DH. et al. Combination of CD40 agonism and CSF-1R blockade reconditions tumor-associated macrophages and drives potent antitumor immunity. Cancer Immunol Res 2017; 5 (12) 1109-1121
  • 181 Rakhmilevich AL, Buhtoiarov IN, Malkovsky M, Sondel PM. CD40 ligation in vivo can induce T cell independent antitumor effects even against immunogenic tumors. Cancer Immunol Immunother 2008; 57 (08) 1151-1160
  • 182 Richards DM, Sefrin JP, Gieffers C, Hill O, Merz C. Concepts for agonistic targeting of CD40 in immuno-oncology. Hum Vaccin Immunother 2020; 16 (02) 377-387
  • 183 Wyzgol A, Müller N, Fick A. et al. Trimer stabilization, oligomerization, and antibody-mediated cell surface immobilization improve the activity of soluble trimers of CD27L, CD40L, 41BBL, and glucocorticoid-induced TNF receptor ligand. J Immunol 2009; 183 (03) 1851-1861
  • 184 An HJ, Kim YJ, Song DH. et al. Crystallographic and mutational analysis of the CD40-CD154 complex and its implications for receptor activation. J Biol Chem 2011; 286 (13) 11226-11235
  • 185 Wajant H. Principles of antibody-mediated TNF receptor activation. Cell Death Differ 2015; 22 (11) 1727-1741
  • 186 Li F, Ravetch JV. Inhibitory Fcγ receptor engagement drives adjuvant and anti-tumor activities of agonistic CD40 antibodies. Science 2011; 333 (6045) 1030-1034
  • 187 Richman LP, Vonderheide RH. Role of crosslinking for agonistic CD40 monoclonal antibodies as immune therapy of cancer. Cancer Immunol Res 2014; 2 (01) 19-26
  • 188 Dahan R, Barnhart BC, Li F, Yamniuk AP, Korman AJ, Ravetch JV. Therapeutic activity of agonistic, human anti-CD40 monoclonal antibodies requires selective FcγR engagement. Cancer Cell 2016; 29 (06) 820-831
  • 189 Liu X, Zhao Y, Shi H. et al. Human immunoglobulin G hinge regulates agonistic anti-CD40 immunostimulatory and antitumour activities through biophysical flexibility. Nat Commun 2019; 10 (01) 4206
  • 190 Merz C, Sykora J, Marschall V. et al. The hexavalent CD40 agonist HERA-CD40L induces T-cell-mediated antitumor immune response through activation of antigen-presenting cells. J Immunother 2018; 41 (09) 385-398
  • 191 Eriksson E, Milenova I, Wenthe J, Moreno R, Alemany R, Loskog A. IL-6 signaling blockade during CD40-mediated immune activation favors antitumor factors by reducing TGF-β, collagen type I, and PD-L1/PD-1. J Immunol 2019; 202 (03) 787-798
  • 192 White AL, Chan HT, French RR. et al. Conformation of the human immunoglobulin G2 hinge imparts superagonistic properties to immunostimulatory anticancer antibodies. Cancer Cell 2015; 27 (01) 138-148
  • 193 de Vos S, Forero-Torres A, Ansell SM. et al. A phase II study of dacetuzumab (SGN-40) in patients with relapsed diffuse large B-cell lymphoma (DLBCL) and correlative analyses of patient-specific factors. J Hematol Oncol 2014; 7: 44
  • 194 Fayad L, Ansell SM, Advani R. et al. Dacetuzumab plus rituximab, ifosfamide, carboplatin and etoposide as salvage therapy for patients with diffuse large B-cell lymphoma relapsing after rituximab, cyclophosphamide, doxorubicin, vincristine and prednisolone: a randomized, double-blind, placebo-controlled phase 2b trial. Leuk Lymphoma 2015; 56 (09) 2569-2578
  • 195 Byrne KT, Betts CB, Mick R. et al. Neoadjuvant selicrelumab, an agonist CD40 antibody, induces changes in the tumor microenvironment in patients with resectable pancreatic cancer. Clin Cancer Res 2021; 27 (16) 4574-4586
  • 196 Knorr DA, Dahan R, Ravetch JV. Toxicity of an Fc-engineered anti-CD40 antibody is abrogated by intratumoral injection and results in durable antitumor immunity. Proc Natl Acad Sci U S A 2018; 115 (43) 11048-11053
  • 197 Weiskopf K. Cancer immunotherapy targeting the CD47/SIRPα axis. Eur J Cancer 2017; 76: 100-109
  • 198 Zhang W, Huang Q, Xiao W. et al. Advances in anti-tumor treatments targeting the CD47/SIRPα axis. Front Immunol 2020; 11: 18
  • 199 Vonderheide RH. CD47 blockade as another immune checkpoint therapy for cancer. Nat Med 2015; 21 (10) 1122-1123
  • 200 Nigro A, Ricciardi L, Salvato I. et al. Enhanced expression of CD47 Is associated with off-target resistance to tyrosine kinase inhibitor gefitinib in NSCLC. Front Immunol 2020; 10: 3135
  • 201 Zhang X, Wang Y, Fan J. et al. Blocking CD47 efficiently potentiated therapeutic effects of anti-angiogenic therapy in non-small cell lung cancer. J Immunother Cancer 2019; 7 (01) 346
  • 202 Pai S, Bamodu OA, Lin YK. et al. CD47-SIRPα signaling induces epithelial-mesenchymal transition and cancer stemness and links to a poor prognosis in patients with oral squamous cell carcinoma. Cells 2019; 8 (12) 1658
  • 203 Arrieta O, Aviles-Salas A, Orozco-Morales M. et al. Association between CD47 expression, clinical characteristics and prognosis in patients with advanced non-small cell lung cancer. Cancer Med 2020; 9 (07) 2390-2402
  • 204 Weiskopf K, Jahchan NS, Schnorr PJ. et al. CD47-blocking immunotherapies stimulate macrophage-mediated destruction of small-cell lung cancer. J Clin Invest 2016; 126 (07) 2610-2620
  • 205 Puro RJ, Bouchlaka MN, Hiebsch RR. et al. Development of AO-176, a next-generation humanized anti-CD47 antibody with novel anticancer properties and negligible red blood cell binding. Mol Cancer Ther 2020; 19 (03) 835-846
  • 206 Ma L, Zhu M, Gai J. et al. Preclinical development of a novel CD47 nanobody with less toxicity and enhanced anti-cancer therapeutic potential. J Nanobiotechnology 2020; 18 (01) 12
  • 207 Tsao LC, Crosby EJ, Trotter TN. et al. CD47 blockade augmentation of trastuzumab antitumor efficacy dependent on antibody-dependent cellular phagocytosis. JCI Insight 2019; 4 (24) e131882
  • 208 Petrova PS, Viller NN, Wong M. et al. TTI-621 (SIRPαFc): a CD47-blocking innate immune checkpoint inhibitor with broad antitumor activity and minimal erythrocyte binding. Clin Cancer Res 2017; 23 (04) 1068-1079
  • 209 Sikic BI, Lakhani N, Patnaik A. et al. First-in-human, first-in-class phase I trial of the anti-CD47 antibody Hu5F9-G4 in patients with advanced cancers. J Clin Oncol 2019; 37 (12) 946-953
  • 210 Weiskopf K, Ring AM, Ho CC. et al. Engineered SIRPα variants as immunotherapeutic adjuvants to anticancer antibodies. Science 2013; 341 (6141) 88-91
  • 211 Voets E, Paradé M, Lutje Hulsik D. et al. Functional characterization of the selective pan-allele anti-SIRPα antibody ADU-1805 that blocks the SIRPα-CD47 innate immune checkpoint. J Immunother Cancer 2019; 7 (01) 340
  • 212 Kauder SE, Kuo TC, Harrabi O. et al. ALX148 blocks CD47 and enhances innate and adaptive antitumor immunity with a favorable safety profile. PLoS One 2018; 13 (08) e0201832
  • 213 Adams S, van der Laan LJ, Vernon-Wilson E. et al. Signal-regulatory protein is selectively expressed by myeloid and neuronal cells. J Immunol 1998; 161 (04) 1853-1859
  • 214 Saito Y, Iwamura H, Kaneko T. et al. Regulation by SIRPα of dendritic cell homeostasis in lymphoid tissues. Blood 2010; 116 (18) 3517-3525
  • 215 Advani R, Flinn I, Popplewell L. et al. CD47 blockade by Hu5F9-G4 and rituximab in non-Hodgkin's lymphoma. N Engl J Med 2018; 379 (18) 1711-1721
  • 216 Ansell SM, Maris MB, Lesokhin AM. et al. Phase I study of the CD47 blocker TTI-621 in patients with relapsed or refractory hematologic malignancies. Clin Cancer Res 2021; 27 (08) 2190-2199
  • 217 Fisher GA, Lakhani NJ, Eng C. et al. A phase Ib/II study of the anti-CD47 antibody magrolimab with cetuximab in solid tumor and colorectal cancer patients. J Clin Oncol 2020; 38 (04) 114
  • 218 Burris III HA, Spira AI, Taylor MH. et al. A first-in-human study of AO-176, a highly differentiated anti-CD47 antibody, in patients with advanced solid tumors. J Clin Oncol 2021; 39 (15) 2516
  • 219 Wang J, Sun Y, Chu Q. et al. Phase I study of IBI322 (anti-CD47/PD-L1 bispecific antibody) monotherapy therapy in patients with advanced solid tumors in China. Cancer Res 2022; 82 (12_Supplement): CT513
  • 220 Liao R, Sun TW, Yi Y. et al. Expression of TREM-1 in hepatic stellate cells and prognostic value in hepatitis B-related hepatocellular carcinoma. Cancer Sci 2012; 103 (06) 984-992
  • 221 Zhou J, Chai F, Lu G. et al. TREM-1 inhibition attenuates inflammation and tumor within the colon. Int Immunopharmacol 2013; 17 (02) 155-161
  • 222 Ho CC, Liao WY, Wang CY. et al. TREM-1 expression in tumor-associated macrophages and clinical outcome in lung cancer. Am J Respir Crit Care Med 2008; 177 (07) 763-770
  • 223 Sigalov AB. A novel ligand-independent peptide inhibitor of TREM-1 suppresses tumor growth in human lung cancer xenografts and prolongs survival of mice with lipopolysaccharide-induced septic shock. Int Immunopharmacol 2014; 21 (01) 208-219
  • 224 Wu J, Li J, Salcedo R, Mivechi NF, Trinchieri G, Horuzsko A. The proinflammatory myeloid cell receptor TREM-1 controls Kupffer cell activation and development of hepatocellular carcinoma. Cancer Res 2012; 72 (16) 3977-3986
  • 225 Wu Q, Zhou W, Yin S. et al. Blocking triggering receptor expressed on myeloid cells-1-positive tumor-associated macrophages induced by hypoxia reverses immunosuppression and anti-programmed cell death ligand 1 resistance in liver cancer. Hepatology 2019; 70 (01) 198-214
  • 226 Ford JW, Gonzalez-Cotto M, MacFarlane IV AW. et al. Tumor-infiltrating myeloid cells co-express TREM1 and TREM2 and elevated TREM-1 associates with disease progression in renal cell carcinoma. Front Oncol 2022; 11: 662723
  • 227 Shen ZT, Sigalov AB. Novel TREM-1 inhibitors attenuate tumor growth and prolong survival in experimental pancreatic cancer. Mol Pharm 2017; 14 (12) 4572-4582
  • 228 Mayes E, Juric V, Binnewies M. et al. Therapeutic targeting of TREM1 with PY159 promotes myeloid cell reprogramming and unleashes anti-tumor immunity. Mol Cancer Ther 2021; 20 (12) , Supplement): 104
  • 229 Ford JW, McVicar DW. TREM and TREM-like receptors in inflammation and disease. Curr Opin Immunol 2009; 21 (01) 38-46
  • 230 Turnbull IR, Gilfillan S, Cella M. et al. Cutting edge: TREM-2 attenuates macrophage activation. J Immunol 2006; 177 (06) 3520-3524
  • 231 Yao Y, Li H, Chen J. et al. TREM-2 serves as a negative immune regulator through Syk pathway in an IL-10 dependent manner in lung cancer. Oncotarget 2016; 7 (20) 29620-29634
  • 232 Molgora M, Esaulova E, Vermi W. et al. TREM2 modulation remodels the tumor myeloid landscape enhancing anti-PD-1 immunotherapy. Cell 2020; 182 (04) 886-900.e17
  • 233 Timperi E, Gueguen P, Molgora M. et al. Lipid-associated macrophages are induced by cancer-associated fibroblasts and mediate immune suppression in breast cancer. Cancer Res 2022; 82 (18) 3291-3306
  • 234 Zhang H, Liu Z, Wen H. et al. Immunosuppressive TREM2(+) macrophages are associated with undesirable prognosis and responses to anti-PD-1 immunotherapy in non-small cell lung cancer. Cancer Immunol Immunother 2022; 71 (10) 2511-2522
  • 235 Wang XQ, Tao BB, Li B. et al. Overexpression of TREM2 enhances glioma cell proliferation and invasion: a therapeutic target in human glioma. Oncotarget 2016; 7 (03) 2354-2366
  • 236 Tang W, Lv B, Yang B. et al. TREM2 acts as a tumor suppressor in hepatocellular carcinoma by targeting the PI3K/Akt/β-catenin pathway. Oncogenesis 2019; 8 (02) 9
  • 237 Patnaik A, Hamilton EP, Winer IS, Tan W. A phase 1a dose-escalation study of PY314, a TREM2 (Triggering Receptor Expressed on Macrophages 2) targeting monoclonal antibody. J Clin Oncol 2022; 40 (16) 2678-2648
  • 238 Medzhitov R, Janeway Jr C. The Toll receptor family and microbial recognition. Trends Microbiol 2000; 8 (10) 452-456
  • 239 Kaur A, Baldwin J, Brar D, Salunke DB, Petrovsky N. Toll-like receptor (TLR) agonists as a driving force behind next-generation vaccine adjuvants and cancer therapeutics. Curr Opin Chem Biol 2022; 70: 102172
  • 240 Pradere JP, Dapito DH, Schwabe RF. The Yin and Yang of Toll-like receptors in cancer. Oncogene 2014; 33 (27) 3485-3495
  • 241 Radolec M, Orr B, Taylor S. et al. Systemic immune checkpoint blockade and intraperitoneal chemo-immunotherapy in recurrent ovarian cancer: an interim analysis. Gynecol Oncol 2022; 166 (Suppl. 01) S165-S166
  • 242 Kyi C, Roudko V, Sabado R. et al. Therapeutic immune modulation against solid cancers with intratumoral poly-ICLC: a pilot trial. Clin Cancer Res 2018; 24 (20) 4937-4948
  • 243 Márquez-Rodas I, Longo F, Rodriguez-Ruiz ME. et al. Intratumoral nanoplexed poly I:C BO-112 in combination with systemic anti-PD-1 for patients with anti-PD-1-refractory tumors. Sci Transl Med 2020; 12 (565) eabb0391
  • 244 Sun L, Kees T, Almeida AS. et al. Activating a collaborative innate-adaptive immune response to control metastasis. Cancer Cell 2021; 39 (10) 1361-1374.e9
  • 245 Vacchelli E, Galluzzi L, Eggermont A. et al. Trial watch: FDA-approved Toll-like receptor agonists for cancer therapy. OncoImmunology 2012; 1 (06) 894-907
  • 246 Maalej KM, Merhi M, Inchakalody VP. et al. CAR-cell therapy in the era of solid tumor treatment: current challenges and emerging therapeutic advances. Mol Cancer 2023; 22 (01) 20
  • 247 Chen Y, Yu Z, Tan X. et al. CAR-macrophage: a new immunotherapy candidate against solid tumors. Biomed Pharmacother 2021; 139: 111605
  • 248 Klichinsky M, Ruella M, Shestova O. et al. Human chimeric antigen receptor macrophages for cancer immunotherapy. Nat Biotechnol 2020; 38 (08) 947-953
  • 249 Anderson N, Klichinsky M, Ciccaglione K. et al. Pre-clinical development of CT-1119, a mesothelin targeting chimeric antigen receptor macrophage (CAR-M), for solid tumor immunotherapy. J Immunother Cancer 2022; 10 (Suppl. 02) A1-A1603
  • 250 Zhang W, Liu L, Su H. et al. Chimeric antigen receptor macrophage therapy for breast tumours mediated by targeting the tumour extracellular matrix. Br J Cancer 2019; 121 (10) 837-845
  • 251 Labrijn AF, Janmaat ML, Reichert JM, Parren PWHI. Bispecific antibodies: a mechanistic review of the pipeline. Nat Rev Drug Discov 2019; 18 (08) 585-608
  • 252 Han L, Chen J, Ding K. et al. Efficient generation of bispecific IgG antibodies by split intein mediated protein trans-splicing system. Sci Rep 2017; 7 (01) 8360