CC BY 4.0 · Pharmaceutical Fronts 2023; 05(04): e227-e242
DOI: 10.1055/s-0043-1777345
Review Article

Pictet–Spengler-Based Multicomponent Domino Reactions to Construct Polyheterocycles

Jun-Duo Hu
1   Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, People's Republic of China
,
Li-Liang Huang
1   Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, People's Republic of China
,
Huang-Di Feng
1   Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, People's Republic of China
2   Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, People's Republic of China
› Institutsangaben


Abstract

The Pictet–Spengler reaction is one of the important methodological arsenals in synthetic and medicinal chemistry, acting as an amenable tool for preparing tetrahydroisoquinoline, tetrahydro-β-carbolines, polycyclic skeletons, and value-added products. More than 100 years after its initial discovery, the Pictet–Spengler reaction's response has not withdrawn from the stage, but it has once again become the focus of attention with new features. The review summarizes recent advances in Pictet–Spengler-based multicomponent reactions from 2007 to 2022, including three-component and four-component Pictet–Spengler cyclization reactions in the presence of metal catalysts, organocatalysts, biological enzyme catalysts, and so on. These Pictet–Spengler-based multicomponent protocols provide an atom-/step economic approach for the synthesis of a library of new chemical entities.



Publikationsverlauf

Eingereicht: 24. Juli 2023

Angenommen: 04. November 2023

Artikel online veröffentlicht:
08. Dezember 2023

© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Pictet A, Spengler T. Über die bildung von isochinolin-derivaten durch einwirkung von methylal auf phenyl-äthylamin, phenyl-alanin und tyrosin. Ber Dtsch Chem Ges 1911; 44: 2030-2036
  • 2 Maity P, Adhikari D, Jana AK. An overview on synthetic entries to tetrahydro-β-carbolines. Tetrahedron 2019; 75 (08) 965-1028
  • 3 Hanyu M, Takada Y, Hashimoto H, Kawamura K, Zhang MR, Fukumura T. Carbon-11 radiolabeling of an oligopeptide containing tryptophan hydrochloride via a Pictet-Spengler reaction using carbon-11 formaldehyde. J Pept Sci 2013; 19 (10) 663-668
  • 4 Mazzeo G, Longhi G, Abbate S. et al. Solvent-free, uncatalyzed asymmetric “ene” reactions of N-tert-butylsulfinyl-3,3,3-trifluoroacetaldimines: a general approach to enantiomerically pure α-(trifluoromethyl)tryptamines. Org Biomol Chem 2017; 15 (18) 3930-3937
  • 5 Du H, Tian S, Chen J, Gu H, Li N, Wang J. Synthesis and biological evaluation of N(9)-substituted harmine derivatives as potential anticancer agents. Bioorg Med Chem Lett 2016; 26 (16) 4015-4019
  • 6 Megyesi R, Mándi A, Kurtán T. et al. Dynamic kinetic resolution of ethyl 1,2,3,4-tetrahydro-β-carboline-1-carboxylate: use of different hydrolases for stereocomplementary processes. Eur J Org Chem 2017; 2017 (32) 4713-4718
  • 7 Kumar D, Vaya D, Chundawat TS. Total synthesis of 6-hydroxymetatacarboline-d discovered from mycena metata via the Pictet-Spengler reaction followed by the Horner-Wadsworth-Emmons reaction. ACS Omega 2021; 6 (13) 8933-8941
  • 8 Liu J, Jiang X, Zhao M. et al. A class of 3S-2-aminoacyltetrahydro-β-carboline-3-carboxylic acids: their facile synthesis, inhibition for platelet activation, and high in vivo anti-thrombotic potency. J Med Chem 2010; 53 (08) 3106-3116
  • 9 Liu Y, Song H, Huang Y. et al. Design, synthesis, and antiviral, fungicidal, and insecticidal activities of tetrahydro-β-carboline-3-carbohydrazide derivatives. J Agric Food Chem 2014; 62 (41) 9987-9999
  • 10 Bi W, Bi Y, Gao X. et al. Indole-TEMPO conjugates alleviate ischemia-reperfusion injury via attenuation of oxidative stress and preservation of mitochondrial function. Bioorg Med Chem 2017; 25 (09) 2545-2568
  • 11 Sasaki T, Li W, Ohmoto T, Koike K. Evaluation of canthinone alkaloids as cerebral protective agents. Bioorg Med Chem Lett 2016; 26 (20) 4992-4995
  • 12 Murai K, Kobayashi T, Miyoshi M, Fujioka H. Oxidative rearrangement of secondary amines using hypervalent iodine (III) reagent. Org Lett 2018; 20 (08) 2333-2337
  • 13 Dalpozzo R. The chiral pool in the Pictet-Spengler reaction for the synthesis of β-Carbolines. Molecules 2016; 21 (06) 699-717
  • 14 Klausen RS, Jacobsen EN. Weak Brønsted acid-thiourea co-catalysis: enantioselective, catalytic protio-Pictet-Spengler reactions. Org Lett 2009; 11 (04) 887-890
  • 15 Li L, Aibibula P, Jia Q, Jia Y. Total syntheses of naucleamides A-C and E, geissoschizine, geissoschizol, (E)-isositsirikine, and 16-epi-(E)-isositsirikine. Org Lett 2017; 19 (10) 2642-2645
  • 16 Rao RS, Ramanathan CR. Brønsted acid-mediated cyclization-dehydrosulfonylation/reduction sequences: An easy access to pyrazinoisoquinolines and pyridopyrazines. Beilstein J Org Chem 2017; 13 (01) 428-440
  • 17 Yin Q, Wang SG, You SL. Asymmetric synthesis of tetrahydro-β-carbolines via chiral phosphoric acid catalyzed transfer hydrogenation reaction. Org Lett 2013; 15 (11) 2688-2691
  • 18 Lu X, Pan X, Yang Y. et al. Synthesis and cytotoxicity of a novel series of saframycin-ecteinascidin analogs containing tetrahydro-β-carboline moieties. Eur J Med Chem 2017; 135: 260-269
  • 19 Singh D, Kumar V, Devi N. et al. Metal-free decarboxylative amination: an alternative approach towards regioselective synthesis of β-Carboline N-fused imidazoles. Adv Synth Catal 2017; 359 (07) 1213-1226
  • 20 Ashok P, Chander S, Chow LMC. et al. Synthesis and in-vitro anti-leishmanial activity of (4-arylpiperazin-1-yl)(1-(thiophen-2-yl)-9H-pyrido[3,4-b]indol-3-yl)methanone derivatives. Bioorg Chem 2017; 70: 100-106
  • 21 Wang Q, Chai H, Yu Z. Acceptorless dehydrogenation of N-heterocycles and secondary alcohols by Ru (II)-NNC complexes bearing a pyrazoyl-indolyl-pyridine ligand. Organometallics 2018; 37 (04) 584-591
  • 22 Bathula C, Roma-Rodrigues C, Chauhan J. et al. Synthesis of tetrahydro-1 H-indolo [2,3-b] pyrrolo [3,2-c] quinolones via intramolecular oxidative ring rearrangement of tetrahydro-β-carbolines and their biological evaluation. New J Chem 2018; 42 (08) 6538-6547
  • 23 Pingaew R, Worachartcheewan A, Nantasenamat C, Prachayasittikul S, Ruchirawat S, Prachayasittikul V. Synthesis, cytotoxicity and QSAR study of N-tosyl-1,2,3,4-tetrahydroisoquinoline derivatives. Arch Pharm Res 2013; 36 (09) 1066-1077
  • 24 Gholamzadeh P. Chapter Three - The Pictet-Spengler reaction: a powerful strategy for the synthesis of heterocycles. Adv Heterocycl Chem 2019; 127: 153-226
  • 25 Voznesenskaia NG, Shmatova OI, Nenajdenko VG. Pictet-Spengler synthesis of perfluoroalkylated tetrahydro-γ-carbolines and tetrahydropyrrolopyrazines. Synthesis 2020; 52 (02) 263-272
  • 26 Dou Y, Kouklovsky C, Vincent G. Bioinspired divergent oxidative cyclization from strictosidine and vincoside derivatives: second-generation total synthesis of (-)-cymoside and access to an original hexacyclic-fused furo [3,2-b] indoline. Chemistry 2020; 26 (71) 17190-17194
  • 27 Anthony SM, Tona V, Zou Y. et al. Total synthesis of (-)-strictosidine and interception of aryne natural product derivatives “strictosidyne” and “strictosamidyne”. J Am Chem Soc 2021; 143 (19) 7471-7479
  • 28 Kondo M, Matsuyama N, Aye TZ. et al. Practical stereoselective synthesis of C3-Spirooxindole and C2-Spiropseudoindoxyl-Pyrrolidines via organocatalyzed Pictet-Spengler reaction/oxidative rearrangement sequence. Adv Synth Catal 2021; 363 (10) 2648-2663
  • 29 Andres R, Wang Q, Zhu J. Asymmetric total synthesis of (-)-arborisidine and (-)-19-epi-arborisidine enabled by a aatalytic enantioselective Pictet-Spengler reaction. J Am Chem Soc 2020; 142 (33) 14276-14285
  • 30 Pu LY, Yang F, Chen JQ. et al. Enantioselective total synthesis of pentacyclic proaporphine alkaloid (-)-misramine. Adv Synth Catal 2021; 363 (03) 785-790
  • 31 Sakamoto J, Umeda Y, Rakumitsu K, Sumimoto M, Ishikawa H. Total syntheses of (-)-strictosidine and related indole alkaloid glycosides. Angew Chem Int Ed Engl 2020; 59 (32) 13414-13422
  • 32 Hu Y, Shen Y, Huang L. et al. Metal-free decarboxylative A3-coupling/Pictet-Spengler cascade accessing polycyclic scaffolds: propiolic acids exceed alkynes. Eur J Org Chem 2020; 2020 (11) 1695-1699
  • 33 Ling Y, Jiang J, Wu B, Gao X. Serum triglyceride, high-density lipoprotein cholesterol, apolipoprotein B, and coronary heart disease in a Chinese population undergoing coronary angiography. J Clin Lipidol 2017; 11 (03) 646-656
  • 34 Reddy KR, Brand D, Wijewardana C, Gao W. Temperature effects on cotton seedling emergence, growth, and development. Agron J 2017; 109 (04) 1379-1387
  • 35 Kamal A, Sathish M, Prasanthi AVG. et al. An efficient one-pot decarboxylative aromatization of tetrahydro-β-carbolines by using N-chlorosuccinimide: total synthesis of norharmane, harmane and eudistomins. RSC Advances 2015; 5 (109) 90121-90126
  • 36 Sattely ES, Meek SJ, Malcolmson SJ, Schrock RR, Hoveyda AH. Design and stereoselective preparation of a new class of chiral olefin metathesis catalysts and application to enantioselective synthesis of quebrachamine: catalyst development inspired by natural product synthesis. J Am Chem Soc 2009; 131 (03) 943-953
  • 37 Huang YQ, Song HJ, Liu YX, Wang QM. Dehydrogenation of N-heterocycles by superoxide ion generated through single-electron transfer. Chemistry 2018; 24 (09) 2065-2069
  • 38 Zheng C, You SL. Exploring the chemistry of spiroindolenines by mechanistically-driven reaction development: asymmetric Pictet-Spengler-type reactions and beyond. Acc Chem Res 2020; 53 (04) 974-987
  • 39 Ahmad S, Shukla L, Szawkało J. et al. Synthesis of novel chiral guanidine catalyst and its application in the asymmetric Pictet-Spengler reaction. Catal Commun 2017; 89: 44-47
  • 40 Amat M, Santos MMM, Bassas O. et al. Straightforward methodology for the enantioselective synthesis of benzo[a]- and indolo[2,3-a]quinolizidines. J Org Chem 2007; 72 (14) 5193-5201
  • 41 Milcendeau P, Zhang Z, Glinsky-Olivier N, van Elslande E, Guinchard X. Au (I)-catalyzed Pictet-Spengler reactions all around the indole ring. J Org Chem 2021; 86 (09) 6406-6422
  • 42 Wagen CC, McMinn SE, Kwan EE, Jacobsen EN. Screening for generality in asymmetric catalysis. Nature 2022; 610 (7933) 680-686
  • 43 Reid JP, Sigman MS. Holistic prediction of enantioselectivity in asymmetric catalysis. Nature 2019; 571 (7765) 343-348
  • 44 Mohr JT, Krout MR, Stoltz BM. Natural products as inspiration for the development of asymmetric catalysis. Nature 2008; 455 (7211) 323-332
  • 45 Burai Patrascu M, Pottel J, Pinus S. et al. From desktop to benchtop with automated computational workflows for computer-aided design in asymmetric catalysis. Nat Catal 2020; 3 (07) 574-584
  • 46 Taran F, Gauchet C, Mohar B. et al. High-throughput screening of enantioselective catalysts by immunoassay. Angew Chem Int Ed 2002; 41 (01) 124-127
  • 47 Jarret M, Tap A, Turpin V. et al. Bioinspired divergent oxidative cyclizations of geissoschizine: total synthesis of (-)-17-nor-excelsinidine,(+)-16-epi-pleiocarpamine, (+)-16-hydroxymethyl-pleiocarpamine and (+)-taberdivarine. Eur J Org Chem 2020; 2020 (40) 6340-6351
  • 48 Liu XY, Qin Y. Recent advances in the total synthesis of monoterpenoid indole alkaloids enabled by asymmetric catalysis. Green Synth Catal 2022; 3 (01) 25-39
  • 49 Kim A, Kim A, Park S. et al. Catalytic and enantioselective control of the C-N stereogenic axis via the Pictet-Spengler reaction. Angew Chem Int Ed Engl 2021; 60 (22) 12279-12283
  • 50 Singh R, Kumar S, Patil MT. et al. Post-Pictet-Spengler cyclization (PPSC): a strategy to synthesize polycyclic β-carboline-derived natural products and biologically active N-heterocycles. Adv Synth Catal 2020; 362 (19) 4027-4077
  • 51 Boltjes A, Dömling A. The Groebke-Blackburn-Bienaymé reaction. Eur J Chem 2019; 2019 (42) 7007-7049
  • 52 Kar S, Sanderson H, Roy K, Benfenati E, Leszczynski J. Green chemistry in the synthesis of pharmaceuticals. Chem Rev 2022; 122 (03) 3637-3710
  • 53 Il'in MV, Novikov AS, Bolotin DS. Sulfonium and selenonium salts as noncovalent organocatalysts for the multicomponent Groebke-Blackburn-Bienaymé reaction. J Org Chem 2022; 87 (15) 10199-10207
  • 54 Liu J, Yang T, Wang ZP. et al. Pyrimidazole-based covalent organic frameworks: integrating functionality and ultrastability via isocyanide chemistry. J Am Chem Soc 2020; 142 (50) 20956-20961
  • 55 Ishwar Bhat S. One-Pot construction of Bis-heterocycles through isocyanide based multicomponent reactions. ChemistrySelect 2020; 5 (27) 8040-8061
  • 56 Al-Jumaili MHA, Hamad AA, Hashem HE. et al. Comprehensive review on the Bis-heterocyclic compounds and their anticancer efficacy. J Mol Struct 2023; 1271: 133970
  • 57 Chen D, Li J, Wang X. et al. Catalytic metal-enabled story of isocyanides for use as “C1N1” synthons in cyclization: beyond radical chemistry. Org Chem Front 2022; 9 (15) 4209-4220
  • 58 Wang C, Yu B, Li W, Zou W, Cong H, Shen Y. Effective strategy for polymer synthesis: multicomponent reactions and click polymerization. Mater Today Chem 2022; 25: 100948
  • 59 Pashev AS, Burdzhiev NT, Stanoeva ER. Synthetic approaches toward the benzo [a] quinolizidine system: a review. Org Prep Proced Int 2016; 48 (06) 425-467
  • 60 Chen H, Xiao T, Li L. et al. Synthesis of fluorinated benzo [a] quinolizidines via visible light-induced tandem substitution of two fluorine atoms in a CF3 group. Adv Synth Catal 2017; 359 (20) 3642-3647
  • 61 Balci M. Acyl Azides: Versatile compounds in the synthesis of various heterocycles. Synthesis 2018; 50 (07) 1373-1401
  • 62 Liu S, Wang H, Wang B. Catalyst-free construction of spiro [benzoquinolizidine-chromanones] via a tandem condensation/1,5-hydride transfer/cyclization process. Org Biomol Chem 2020; 18 (43) 8839-8843
  • 63 Wu X, Dai X, Nie L. et al. Organocatalyzed enantioselective one-pot three-component access to indoloquinolizidines by a Michael addition-Pictet-Spengler sequence. Chem Commun (Camb) 2010; 46 (16) 2733-2735
  • 64 Wu X, Dai X, Fang H. et al. One-pot three-component syntheses of indoloquinolizidine derivatives using an organocatalytic Michael addition and subsequent Pictet–Spengler cyclization. Chemistry 2011; 17 (38) 10510-10514
  • 65 Shiri M. Indoles in multicomponent processes (MCPs). Chem Rev 2012; 112 (06) 3508-3549
  • 66 Zeng X. Recent advances in catalytic sequential reactions involving hydroelement addition to carbon-carbon multiple bonds. Chem Rev 2013; 113 (08) 6864-6900
  • 67 Calcaterra A, Mangiardi L, Delle Monache G. et al. The Pictet-Spengler reaction updates its habits. Molecules 2020; 25 (02) 414
  • 68 Znabet A, Zonneveld J, Janssen E. et al. Asymmetric synthesis of synthetic alkaloids by a tandem biocatalysis/Ugi/Pictet-Spengler-type cyclization sequence. Chem Commun (Camb) 2010; 46 (41) 7706-7708
  • 69 Wang W, Ollio S, Herdtweck E, Dömling A. Polycyclic compounds by Ugi-Pictet-Spengler sequence. J Org Chem 2011; 76 (02) 637-644
  • 70 Alonso F, Galilea A, Mañez PA. et al. Beyond pseudo-natural products: sequential Ugi/Pictet-Spengler reactions leading to steroidal pyrazinoisoquinolines that trigger caspase-independent death in hepG2 cells. ChemMedChem 2021; 16 (12) 1945-1955
  • 71 Samala S, Saifuddin M, Mandadapu AK, Kundu B. Three-component tandem-intramolecular hydroamination reactions in one pot involving indoles, 2-aminobenzyl alcohols, and 2-alkynylbenzaldehydes: consecutive 7-endo-trig and electrophilic 6-endo-dig cyclizations. Eur J Org Chem 2013; 2013 (18) 3797-3806
  • 72 Sun J, Jiang W, Yan CG. Convenient construction of tetrahydrochromeno[4′,3′:2,3]indolizino[8,7-b]indoles and tetrahydroindolizino[8,7-b]indoles via one-pot domino reaction. RSC Advances 2018; 8 (50) 28736-28744
  • 73 Ali SA, Mondal SK, Das T. et al. One-pot tandem cyclisation to pyrrolo[1,2-a][1,4]benzodiazepines: a modified approach to the Pictet-Spengler reaction. Org Biomol Chem 2019; 17 (18) 4652-4662
  • 74 Peytam F, Adib M, Shourgeshty R. et al. Synthesis and biological evaluation of new dihydroindolizino [8,7-b] indole derivatives as novel α-glucosidase inhibitors. J Mol Struct 2021; 2021 (1224) 129290-129300
  • 75 Cai Q, Li DK, Zhou RR, Shu WM, Wu YD, Wu AX. Acid-catalyzed multicomponent tandem cyclizations: Access to polyfunctional dihydroindolizino [8,7-b] indoles. Org Lett 2016; 18 (06) 1342-1345
  • 76 González-Pelayo S, Bernardo O, Borge J, López LA. Synthesis of metallocene analogues of the phenethylamine and tetrahydroisoquinoline scaffolds via regioselective ring opening of 2-aryl-N-sulfonyl aziridines. Adv Synth Catal 2021; 363 (03) 819-825
  • 77 Magyar CL, Wall TJ, Davies SB. et al. Triflic anhydride mediated synthesis of 3,4-dihydroquinazolines: a three-component one-pot tandem procedure. Org Biomol Chem 2019; 17 (34) 7995-8000
  • 78 Campbell MV, Iretskii AV, Mosey RA. One-pot tandem assembly of amides, amines, and ketones: synthesis of C4-quaternary 3, 4-and 1,4-dihydroquinazolines. J Org Chem 2020; 85 (17) 11211-11225
  • 79 Jiang J, Qing J, Gong LZ. Asymmetric synthesis of 3-amino-δ-lactams and benzo[a]quinolizidines by catalytic cyclization reactions involving azlactones. Chemistry 2009; 15 (29) 7031-7034
  • 80 Zhu HL, Ling JB, Xu PF. α-Oxo-γ-butyrolactam, N-containing pronucleophile in organocatalytic one-pot assembly of butyrolactam-fused indoloquinolizidines. J Org Chem 2012; 77 (17) 7737-7743
  • 81 Rueping M, Volla CMR, Bolte M, Raabe G. General and efficient organocatalytic synthesis of indoloquinolizidines, pyridoquinazolines and quinazolinones through a one-pot domino Michael addition-cyclization-Pictet-Spengler or 1,2-amine addition reaction. Adv Synth Catal 2011; 353 (14–15): 2853-2859
  • 82 Hong BC, Liao WK, Dange NS, Liao JH. One-pot organocatalytic enantioselective domino double-Michael reaction and Pictet-Spengler-lactamization reaction. A facile entry to the “inside yohimbane” system with five contiguous stereogenic centers. Org Lett 2013; 15 (03) 468-471
  • 83 Du H, Rodriguez J, Bugaut X, Constantieux T. Organocatalytic enantioselective multicomponent synthesis of pyrrolopiperazines. Adv Synth Catal 2014; 356 (04) 851-856
  • 84 Dai W, Lu H, Li X, Shi F, Tu SJ. Diastereo- and enantioselective construction of a bispirooxindole scaffold containing a tetrahydro-β-carboline moiety through an organocatalytic asymmetric cascade reaction. Chemistry 2014; 20 (36) 11382-11389
  • 85 Yu Q, Guo P, Jian J, Chen Y, Xu J. Nine-step total synthesis of (-)-strychnofoline. Chem Commun (Camb) 2018; 54 (09) 1125-1128
  • 86 Suryavanshi PA, Sridharan V, Menéndez JC. A β-enaminone-initiated multicomponent domino reaction for the synthesis of indoloquinolizines and benzoquinolizines from acyclic precursors. Chemistry 2013; 19 (39) 13207-13215
  • 87 Sun J, Zhang LL, Yan CG. Facile construction of 1,2,6,7,12,12b-hexahydroindolo [2,3-a] quinolizines via one-pot three-component reactions of tryptamines, propiolate, and α,β-unsaturated aromatic aldehydes or ketones. Tetrahedron 2013; 69 (26) 5451-5459
  • 88 Xing S, Ren J, Wang K. et al. Lewis acid promoted three-component reactions of aziridines, arenes and aldehydes: an efficient and diastereoselective synthesis of cis-1, 4-disubstituted tetrahydroisoquinolines. Tetrahedron 2015; 71 (36) 6290-6299
  • 89 Ghashghaei O, Pedrola M, Seghetti F. et al. Extended multicomponent reactions with indole aldehydes: access to unprecedented polyheterocyclic scaffolds, ligands of the aryl hydrocarbon receptor. Angew Chem Int Ed Engl 2021; 60 (05) 2603-2608
  • 90 Zhu D, Sun J, Yan CG. One-pot synthesis of 6, 11-dihydro-5 H-indolizino [8,7-b] indoles via sequential formation of β-enamino ester, Michael addition and Pictet-Spengler reactions. RSC Advances 2014; 4 (108) 62817-62826
  • 91 Wani IA, Goswami G, Sk S, Mal A, Sayyad M, Ghorai MK. A synthetic route to 1,4-disubstituted tetrahydro-β-carbolines and tetrahydropyranoindoles via ring-opening/Pictet-Spengler reaction of aziridines and epoxides with indoles/aldehydes. Org Biomol Chem 2020; 18 (02) 272-287
  • 92 Cao L, Huang L, Xu X, Van der Eycken EV, Feng HD. Synthesis of nitrogen-tethered 1,6-enynes through CuI/TFA catalysis. Org Chem Front 2022; 9 (02) 394-399
  • 93 He WX, Xing X, Yang ZJ, Yu Y, Wang N, Yu XQ. Biocatalytic one-pot three-component synthesis of indoloquinolizines with high diastereoselectivity. Catal Lett 2019; 149 (02) 638-643
  • 94 Ruijter E, Garcia-Hartjes J, Hoffmann F. et al. Synthesis of polycyclic alkaloid-type compounds by an N-acyliminium Pictet-Spengler/diels-alder sequence. Synlett 2010; 2010 (16) 2485-2489
  • 95 Deng QS, Yu AM, Zhang L, Meng XT. Selective synthesis of benzothiophene-fused polycyclic, eight-membered N-heterocycles via amine-mediated three-component domino strategy. Adv Synth Catal 2021; 363 (04) 1081-1087
  • 96 Gageat M, Gaultier L, El Kaim L. et al. New Ugi/Pictet-Spengler multicomponent formation of polycyclic diketopiperazines from isocyanides and a-keto acids. Synlett 2007; 38 (25) 500-502
  • 97 Lesma G, Cecchi R, Crippa S. et al. Ugi 4-CR/Pictet-Spengler reaction as a short route to tryptophan-derived peptidomimetics. Org Biomol Chem 2012; 10 (45) 9004-9012
  • 98 Liu H, William S, Herdtweck E, Botros S, Dömling A. MCR synthesis of praziquantel derivatives. Chem Biol Drug Des 2012; 79 (04) 470-477
  • 99 Tyagi V, Khan S, Bajpai V, Gauniyal HM, Kumar B, Chauhan PM. Skeletal diverse synthesis of N-fused polycyclic heterocycles via the sequence of Ugi-type MCR and CuI-catalyzed coupling/tandem Pictet-Spengler reaction. J Org Chem 2012; 77 (03) 1414-1421
  • 100 Sinha MK, Khoury K, Herdtweck E, Dömling A. Tricycles by a new Ugi variation and Pictet-Spengler reaction in one pot. Chemistry 2013; 19 (25) 8048-8052
  • 101 Zhang B, Kurpiewska K, Dömling A. Highly stereoselective Ugi/Pictet-Spengler sequence. J Org Chem 2022; 87 (11) 7085-7096
  • 102 Cano-Herrera MA, Miranda LD. Expedient entry to the piperazinohydroisoquinoline ring system using a sequential Ugi/Pictet-Spengler/reductive methylation reaction protocol. Chem Commun (Camb) 2011; 47 (38) 10770-10772
  • 103 Tan Y, Luan HL, Lin H. et al. One-pot enantioselective construction of indoloquinolizidine derivatives bearing five contiguous stereocenters using aliphatic aldehydes, nitroethylenes, and tryptamine. Chem Commun (Camb) 2014; 50 (70) 10027-10030
  • 104 Shirsat PK, Narasimhulu V, Kumbhare RM. Acid-catalyzed four-component tandem double cyclization: access to dihydroindolizino [8,7-b] indoles. ChemistrySelect 2019; 4 (29) 8550-8553