CC BY 4.0 · Semin Musculoskelet Radiol 2023; 27(06): 618-631
DOI: 10.1055/s-0043-1775741
Review Article

Advanced Magnetic Resonance Imaging and Molecular Imaging of the Painful Knee

Jacob M. Mostert
1   Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
,
Niels B.J. Dur
1   Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
2   Department of Orthopedics and Sports Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
,
Xiufeng Li
3   Department of Radiology, Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota
,
Jutta M. Ellermann
3   Department of Radiology, Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota
,
Robert Hemke
4   Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
,
Laurel Hales
5   Department of Radiology, Stanford University, Stanford, California
,
Valentina Mazzoli
5   Department of Radiology, Stanford University, Stanford, California
,
Feliks Kogan
5   Department of Radiology, Stanford University, Stanford, California
,
James F. Griffith
6   Department of Imaging and Interventional Radiology Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
,
Edwin H.G. Oei
1   Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
,
Rianne A. van der Heijden
1   Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
7   Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin
› Institutsangaben

Abstract

Chronic knee pain is a common condition. Causes of knee pain include trauma, inflammation, and degeneration, but in many patients the pathophysiology remains unknown. Recent developments in advanced magnetic resonance imaging (MRI) techniques and molecular imaging facilitate more in-depth research focused on the pathophysiology of chronic musculoskeletal pain and more specifically inflammation. The forthcoming new insights can help develop better targeted treatment, and some imaging techniques may even serve as imaging biomarkers for predicting and assessing treatment response in the future. This review highlights the latest developments in perfusion MRI, diffusion MRI, and molecular imaging with positron emission tomography/MRI and their application in the painful knee. The primary focus is synovial inflammation, also known as synovitis. Bone perfusion and bone metabolism are also addressed.



Publikationsverlauf

Artikel online veröffentlicht:
07. November 2023

© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Quantitative Imaging Biomarkers Alliance (QIBA) MR Biomarker Committee. DCE-MRI quantification. Quantitative Imaging Biomarkers Alliance. Profile Stage: Public comment. October 12, 2022. Available at: https://qibawiki.rsna.org/index.php/Profiles Accessed August 29, 2023
  • 2 Walker-Samuel S, Leach MO, Collins DJ. Evaluation of response to treatment using DCE-MRI: the relationship between initial area under the gadolinium curve (IAUGC) and quantitative pharmacokinetic analysis. Phys Med Biol 2006; 51 (14) 3593-3602
  • 3 Taylor JS, Reddick WE. Evolution from empirical dynamic contrast-enhanced magnetic resonance imaging to pharmacokinetic MRI. Adv Drug Deliv Rev 2000; 41 (01) 91-110
  • 4 Baudrexel S, Nöth U, Schüre JR, Deichmann RT. T⌝1 mapping with the variable flip angle technique: a simple correction for insufficient spoiling of transverse magnetization. Magn Reson Med 2018; 79 (06) 3082-3092
  • 5 Poot DHJ, van der Heijden RA, van Middelkoop M, Oei EHG, Klein S. Dynamic contrast-enhanced MRI of the patellar bone: how to quantify perfusion. J Magn Reson Imaging 2018; 47 (03) 848-858
  • 6 Tofts PS, Kermode AG. Blood brain barrier permeability in multiple sclerosis using labelled DTPA with PET, CT and MRI. J Neurol Neurosurg Psychiatry 1989; 52 (08) 1019-1020
  • 7 Tofts PS. T1-weighted DCE imaging concepts: modelling, acquisition and analysis. Signal 2010; 500 (450) 400
  • 8 Shakoor D, Demehri S, Roemer FW, Loeuille D, Felson DT, Guermazi A. Are contrast-enhanced and non-contrast MRI findings reflecting synovial inflammation in knee osteoarthritis: a meta-analysis of observational studies. Osteoarthritis Cartilage 2020; 28 (02) 126-136
  • 9 Riis RGC, Gudbergsen H, Henriksen M. et al. Synovitis assessed on static and dynamic contrast-enhanced magnetic resonance imaging and its association with pain in knee osteoarthritis: a cross-sectional study. Eur J Radiol 2016; 85 (06) 1099-1108
  • 10 de Vries BA, van der Heijden RA, Poot DHJ. et al. Quantitative DCE-MRI demonstrates increased blood perfusion in Hoffa's fat pad signal abnormalities in knee osteoarthritis, but not in patellofemoral pain. Eur Radiol 2020; 30 (06) 3401-3408
  • 11 de Vries BA, van der Heijden RA, Verschueren J. et al. Quantitative subchondral bone perfusion imaging in knee osteoarthritis using dynamic contrast enhanced MRI. Semin Arthritis Rheum 2020; 50 (02) 177-182
  • 12 MacKay JW, Nezhad FS, Rifai T. et al. Dynamic contrast-enhanced MRI of synovitis in knee osteoarthritis: repeatability, discrimination and sensitivity to change in a prospective experimental study. Eur Radiol 2021; 31 (08) 5746-5758
  • 13 Daugaard CL, Henriksen M, Riis RGC. et al. The impact of a significant weight loss on inflammation assessed on DCE-MRI and static MRI in knee osteoarthritis: a prospective cohort study. Osteoarthritis Cartilage 2020; 28 (06) 766-773
  • 14 Bandak E, Boesen M, Bliddal H. et al. The effect of exercise therapy on inflammatory activity assessed by MRI in knee osteoarthritis: secondary outcomes from a randomized controlled trial. Knee 2021; 28: 256-265
  • 15 Riis RGC, Henriksen M, Klokker L. et al. The effects of intra-articular glucocorticoids and exercise on pain and synovitis assessed on static and dynamic magnetic resonance imaging in knee osteoarthritis: exploratory outcomes from a randomized controlled trial. Osteoarthritis Cartilage 2017; 25 (04) 481-491
  • 16 Gait AD, Hodgson R, Parkes MJ. et al. Synovial volume vs synovial measurements from dynamic contrast enhanced MRI as measures of response in osteoarthritis. Osteoarthritis Cartilage 2016; 24 (08) 1392-1398
  • 17 Axelsen MB, Stoltenberg M, Poggenborg RP. et al. Dynamic gadolinium-enhanced magnetic resonance imaging allows accurate assessment of the synovial inflammatory activity in rheumatoid arthritis knee joints: a comparison with synovial histology. Scand J Rheumatol 2012; 41 (02) 89-94
  • 18 van der Leij C, Lavini C, van de Sande MGH, de Hair MJH, Wijffels C, Maas M. Reproducibility of DCE-MRI time-intensity curve-shape analysis in patients with knee arthritis: a comparison with qualitative and pharmacokinetic analyses. J Magn Reson Imaging 2015; 42 (06) 1497-1506
  • 19 Axelsen MB, Poggenborg RP, Stoltenberg M. et al. Reliability and responsiveness of dynamic contrast-enhanced magnetic resonance imaging in rheumatoid arthritis. Scand J Rheumatol 2013; 42 (02) 115-122
  • 20 Maijer KI, van der Leij C, de Hair MJH. et al. Dynamic contrast-enhanced magnetic resonance imaging using pharmacokinetic modeling: initial experience in patients with early arthritis. Arthritis Rheumatol 2016; 68 (03) 587-596
  • 21 Hemke R, Lavini C, Nusman CM. et al. Pixel-by-pixel analysis of DCE-MRI curve shape patterns in knees of active and inactive juvenile idiopathic arthritis patients. Eur Radiol 2014; 24 (07) 1686-1693
  • 22 Hemke R, Nusman CM, van den Berg JM. et al. Construct validity of pixel-by-pixel DCE-MRI: correlation with conventional MRI scores in juvenile idiopathic arthritis. Eur J Radiol 2017; 94: 1-5
  • 23 Workie DW, Graham TB, Laor T. et al. Quantitative MR characterization of disease activity in the knee in children with juvenile idiopathic arthritis: a longitudinal pilot study. Pediatr Radiol 2007; 37 (06) 535-543
  • 24 Detre JA, Leigh JS, Williams DS, Koretsky AP. Perfusion imaging. Magn Reson Med 1992; 23 (01) 37-45
  • 25 Xing D, Zha Y, Yan L, Wang K, Gong W, Lin H. Feasibility of ASL spinal bone marrow perfusion imaging with optimized inversion time. J Magn Reson Imaging 2015; 42 (05) 1314-1320
  • 26 Li X, Johnson CP, Ellermann J. Measuring knee bone marrow perfusion using arterial spin labeling at 3 T. Sci Rep 2020; 10 (01) 5260
  • 27 Li X, Johnson CP, Ellermann J. 7T bone perfusion imaging of the knee using arterial spin labeling MRI. Magn Reson Med 2020; 83 (05) 1577-1586
  • 28 Li X, Wang D, Auerbach EJ, Moeller S, Ugurbil K, Metzger GJ. Theoretical and experimental evaluation of multi-band EPI for high-resolution whole brain pCASL Imaging. Neuroimage 2015; 106: 170-181
  • 29 Li X, Johnson C, Ellerman J. Knee epiphyseal bone marrow perfusion imaging using FAIR RESOLVE. Paper presented at: Proceedings of the International Society for Magnetic Resonance (ISMRM) 28th Annual Meeting; April 18–23, 2020; Sydney, NSW, Australia
  • 30 Kangarlu A, Baertlein BA, Lee R. et al. Dielectric resonance phenomena in ultra high field MRI. J Comput Assist Tomogr 1999; 23 (06) 821-831
  • 31 Filipowska J, Tomaszewski KA, Niedźwiedzki Ł, Walocha JA, Niedźwiedzki T. The role of vasculature in bone development, regeneration and proper systemic functioning. Angiogenesis 2017; 20 (03) 291-302
  • 32 McCullough RW, Gandsman EJ, Litchman HE, Schatz SL. Dynamic bone scintigraphy in osteochondritis dissecans. Int Orthop 1988; 12 (04) 317-322
  • 33 Litchman HM, McCullough RW, Gandsman EJ, Schatz SL. Computerized blood flow analysis for decision making in the treatment of osteochondritis dissecans. J Pediatr Orthop 1988; 8 (02) 208-212
  • 34 Guirguis M, Sharan G, Wang J, Chhabra A. Diffusion-weighted MR imaging of musculoskeletal tissues: incremental role over conventional MR imaging in bone, soft tissue, and nerve lesions. BJR Open 2022; 4 (01) 20210077
  • 35 Subhawong TK, Jacobs MA, Fayad LM. Diffusion-weighted MR imaging for characterizing musculoskeletal lesions. Radiographics 2014; 34 (05) 1163-1177
  • 36 Li X, Liu X, Du X, Ye Z. Diffusion-weighted MR imaging for assessing synovitis of wrist and hand in patients with rheumatoid arthritis: a feasibility study. Magn Reson Imaging 2014; 32 (04) 350-353
  • 37 Fujimori M, Murakami K, Sugimori H. et al. Intravoxel incoherent motion MRI for discrimination of synovial proliferation in the hand arthritis: a prospective proof-of-concept study. J Magn Reson Imaging 2019; 50 (04) 1199-1206
  • 38 Jeromel M, Jevtič V, Serša I, Ambrožič A, Tomšič M. Quantification of synovitis in the cranio-cervical region: dynamic contrast enhanced and diffusion weighted magnetic resonance imaging in early rheumatoid arthritis—a feasibility follow-up study. Eur J Radiol 2012; 81 (11) 3412-3419
  • 39 Vendhan K, Bray TJP, Atkinson D. et al. A diffusion-based quantification technique for assessment of sacroiliitis in adolescents with enthesitis-related arthritis. Br J Radiol 2016; 89 (1059): 20150775
  • 40 Bray T, Vendhan K, Ambrose N. et al. Diffusion-weighted imaging is a sensitive biomarker of response to biologic therapy in enthesitis-related arthritis. Rheumatology (Oxford) 2017; 56 (03) 399-407
  • 41 Barendregt AM, Mazzoli V, van Gulik EC. et al. Juvenile idiopathic arthritis: diffusion-weighted MRI in the assessment of arthritis in the knee. Radiology 2020; 295 (02) 373-380
  • 42 Barendregt AM, van Gulik EC, Lavini C. et al. Diffusion-weighted imaging for assessment of synovial inflammation in juvenile idiopathic arthritis: a promising imaging biomarker as an alternative to gadolinium-based contrast agents. Eur Radiol 2017; 27 (11) 4889-4899
  • 43 Sandford HJC, MacKay JW, Watkins LE, Gold GE, Kogan F, Mazzoli V. Gadolinium-free assessment of synovitis using diffusion tensor imaging. NMR Biomed 2022; 35 (01) e4614
  • 44 Tripathi D, Awasthi R, Agarwal V. et al. Diffusion tensor and dynamic contrast-enhanced magnetic resonance imaging correlate with molecular markers of inflammation in the synovium. Diagnostics (Basel) 2022; 12 (12) 3041
  • 45 Agarwal V, Kumar M, Singh JK, Rathore RKS, Misra R, Gupta RK. Diffusion tensor anisotropy magnetic resonance imaging: a new tool to assess synovial inflammation. Rheumatology (Oxford) 2009; 48 (04) 378-382
  • 46 Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 1988; 168 (02) 497-505
  • 47 Le Bihan D. What can we see with IVIM MRI?. Neuroimage 2019; 187: 56-67
  • 48 Huch B, Stumpf K, Bracher AK. et al. Intravoxel incoherent motion (IVIM) MRI in pediatric patients with synovitis of the knee joint: a prospective pilot study. Pediatr Rheumatol Online J 2022; 20 (01) 99
  • 49 Hilbert F, Holl-Wieden A, Sauer A, Köstler H, Neubauer H. Intravoxel incoherent motion magnetic resonance imaging of the knee joint in children with juvenile idiopathic arthritis. Pediatr Radiol 2017; 47 (06) 681-690
  • 50 Guo T, Chen J, Wu B. et al. Use of intravoxel incoherent motion diffusion-weighted imaging in identifying the vascular and avascular zones of human meniscus. J Magn Reson Imaging 2017; 45 (04) 1090-1096
  • 51 McWalter EJ, Sveinsson B, Oei EH. et al. Non-contrast diffusion-weighted MRI for detection of synovitis using DESS. Paper presented at: International Society for Magnetic Resonance annual meeting; May 10–16, 2014. Milan, Italy:
  • 52 de Vries BA, Breda SJ, Sveinsson B. et al. Detection of knee synovitis using non-contrast-enhanced qDESS compared with contrast-enhanced MRI. Arthritis Res Ther 2021; 23 (01) 55
  • 53 Eijgenraam SM, Chaudhari AS, Reijman M. et al. Time-saving opportunities in knee osteoarthritis: T2 mapping and structural imaging of the knee using a single 5-min MRI scan. Eur Radiol 2020; 30 (04) 2231-2240
  • 54 Son YN, Jin W, Jahng GH. et al. Efficacy of double inversion recovery magnetic resonance imaging for the evaluation of the synovium in the femoro-patellar joint without contrast enhancement. Eur Radiol 2018; 28 (02) 459-467
  • 55 Verkuil F, Hemke R, van Gulik EC. et al. Double inversion recovery MRI versus contrast-enhanced MRI for evaluation of knee synovitis in juvenile idiopathic arthritis. Insights Imaging 2022; 13 (01) 167
  • 56 Raynor W, Houshmand S, Gholami S. et al. Evolving role of molecular imaging with (18)F-sodium fluoride PET as a biomarker for calcium metabolism. Curr Osteoporos Rep 2016; 14 (04) 115-125
  • 57 Crymes Jr WB, Demos H, Gordon L. Detection of musculoskeletal infection with 18F-FDG PET: review of the current literature. J Nucl Med Technol 2004; 32 (01) 12-15
  • 58 Czernin J, Satyamurthy N, Schiepers C. Molecular mechanisms of bone 18F-NaF deposition. J Nucl Med 2010; 51 (12) 1826-1829
  • 59 Piert M, Zittel TT, Becker GA. et al. Assessment of porcine bone metabolism by dynamic [18F]fluoride ion PET: correlation with bone histomorphometry. J Nucl Med Off Publ Soc Nucl Med 2001; 42 (07) 1091-1100
  • 60 Adams MC, Turkington TG, Wilson JM, Wong TZ. A systematic review of the factors affecting accuracy of SUV measurements. AJR Am J Roentgenol 2010; 195 (02) 310-320
  • 61 Hawkins RA, Choi Y, Huang SC. et al. Evaluation of the skeletal kinetics of fluorine-18-fluoride ion with PET. J Nucl Med 1992; 33 (05) 633-642
  • 62 Blake GM, Siddique M, Frost ML, Moore AEB, Fogelman I. Quantitative PET imaging using (18)F sodium fluoride in the assessment of metabolic bone diseases and the monitoring of their response to therapy. PET Clin 2012; 7 (03) 275-291
  • 63 Haddock B, Fan AP, Jørgensen NR, Suetta C, Gold GE, Kogan F. Kinetic [18F]-Fluoride of the knee in normal volunteers. Clin Nucl Med 2019; 44 (05) 377-385
  • 64 Shah J, Bural G, Houseni M, Alavi A. The role of FDG-PET in assessing osteoarthritis. J Nucl Med 2007; 48 (Suppl. 02) 282
  • 65 Nakamura H, Masuko K, Yudoh K. et al. Positron emission tomography with 18F-FDG in osteoarthritic knee. Osteoarthritis Cartilage 2007; 15 (06) 673-681
  • 66 Parsons MA, Moghbel M, Saboury B. et al. Increased 18F-FDG uptake suggests synovial inflammatory reaction with osteoarthritis: preliminary in-vivo results in humans. Nucl Med Commun 2015; 36 (12) 1215-1219
  • 67 Kogan F, Fan AP, McWalter EJ, Oei EHG, Quon A, Gold GE. PET/MRI of metabolic activity in osteoarthritis: a feasibility study. J Magn Reson Imaging 2017; 45 (06) 1736-1745
  • 68 Watkins L, MacKay J, Haddock B. et al. Assessment of quantitative [18F]Sodium fluoride PET measures of knee subchondral bone perfusion and mineralization in osteoarthritic and healthy subjects. Osteoarthritis Cartilage 2021; 29 (06) 849-858
  • 69 Al-Zaghal A, Yellanki DP, Ayubcha C, Werner TJ, Høilund-Carlsen PF, Alavi A. CT-based tissue segmentation to assess knee joint inflammation and reactive bone formation assessed by 18F-FDG and 18F-NaF PET/CT: effects of age and BMI. Hell J Nucl Med 2018; 21 (02) 102-107
  • 70 Kogan F, Fan AP, Monu U, Iagaru A, Hargreaves BA, Gold GE. Quantitative imaging of bone-cartilage interactions in ACL-injured patients with PET-MRI. Osteoarthritis Cartilage 2018; 26 (06) 790-796
  • 71 MacKay JW, Watkins L, Gold G, Kogan F. [18F]NaF PET-MRI provides direct in-vivo evidence of the association between bone metabolic activity and adjacent synovitis in knee osteoarthritis: a cross-sectional study. Osteoarthritis Cartilage 2021; 29 (08) 1155-1162
  • 72 Blom AB, van Lent PLEM, Holthuysen AEM. et al. Synovial lining macrophages mediate osteophyte formation during experimental osteoarthritis. Osteoarthritis Cartilage 2004; 12 (08) 627-635
  • 73 Haddock B, Fan AP, Uhlrich SD. et al. Assessment of acute bone loading in humans using [18F]NaF PET/MRI. Eur J Nucl Med Mol Imaging 2019; 46 (12) 2452-2463
  • 74 Watkins LE, Haddock B, MacKay JW. et al. [18F]Sodium fluoride PET-MRI detects increased metabolic bone response to whole-joint loading stress in osteoarthritic knees. Osteoarthritis Cartilage 2022; 30 (11) 1515-1525
  • 75 Nam JL, Takase-Minegishi K, Ramiro S. et al. Efficacy of biological disease-modifying antirheumatic drugs: a systematic literature review informing the 2016 update of the EULAR recommendations for the management of rheumatoid arthritis. Ann Rheum Dis 2017; 76 (06) 1113-1136
  • 76 Colebatch AN, Edwards CJ, Østergaard M. et al. EULAR recommendations for the use of imaging of the joints in the clinical management of rheumatoid arthritis. Ann Rheum Dis 2013; 72 (06) 804-814
  • 77 Hetland ML, Ejbjerg B, Hørslev-Petersen K. et al; CIMESTRA study group. MRI bone oedema is the strongest predictor of subsequent radiographic progression in early rheumatoid arthritis. Results from a 2-year randomised controlled trial (CIMESTRA). Ann Rheum Dis 2009; 68 (03) 384-390
  • 78 Beckers C, Ribbens C, André B. et al. Assessment of disease activity in rheumatoid arthritis with (18)F-FDG PET. J Nucl Med 2004; 45 (06) 956-964
  • 79 Miese F, Scherer A, Ostendorf B. et al. Hybrid 18F-FDG PET-MRI of the hand in rheumatoid arthritis: initial results. Clin Rheumatol 2011; 30 (09) 1247-1250
  • 80 Beckers C, Jeukens X, Ribbens C. et al. (18)F-FDG PET imaging of rheumatoid knee synovitis correlates with dynamic magnetic resonance and sonographic assessments as well as with the serum level of metalloproteinase-3. Eur J Nucl Med Mol Imaging 2006; 33 (03) 275-280
  • 81 Roivainen A, Parkkola R, Yli-Kerttula T. et al. Use of positron emission tomography with methyl-11C-choline and 2-18F-fluoro-2-deoxy-D-glucose in comparison with magnetic resonance imaging for the assessment of inflammatory proliferation of synovium. Arthritis Rheum 2003; 48 (11) 3077-3084
  • 82 van der Laken CJ, Elzinga EH, Kropholler MA. et al. Noninvasive imaging of macrophages in rheumatoid synovitis using 11C-(R)-PK11195 and positron emission tomography. Arthritis Rheum 2008; 58 (11) 3350-3355
  • 83 Bruijnen STG, Verweij NJF, Gent YYJ. et al. Imaging disease activity of rheumatoid arthritis by macrophage targeting using second generation translocator protein positron emission tomography tracers. PLoS One 2019; 14 (09) e0222844
  • 84 Verweij NJF, Yaqub M, Bruijnen STG. et al. First in man study of [18F]fluoro-PEG-folate PET: a novel macrophage imaging technique to visualize rheumatoid arthritis. Sci Rep 2020; 10 (01) 1047
  • 85 Corbin K, von Scheven E, Seo Y, Behr S, Kenzie JK. Comparison of clinical parameters and PET/MRI in juvenile idiopathic arthritis [abstract]. Arthritis Rheumatol 2016;68(10):
  • 86 Kogan F, Fan AP, Gold GE. Potential of PET-MRI for imaging of non-oncologic musculoskeletal disease. Quant Imaging Med Surg 2016; 6 (06) 756-771
  • 87 Cipriano PW, Yoon D, Gandhi H. et al. 18F-FDG PET/MRI in chronic sciatica: early results revealing spinal and nonspinal abnormalities. J Nucl Med 2018; 59 (06) 967-972
  • 88 Chauveau F, Becker G, Boutin H. Have (R)-[11C]PK11195 challengers fulfilled the promise? A scoping review of clinical TSPO PET studies. Eur J Nucl Med Mol Imaging 2021; 49 (01) 201-220
  • 89 James ML, Shen B, Nielsen CH. et al. Evaluation of σ-1 receptor radioligand 18F-FTC-146 in rats and squirrel monkeys using PET. J Nucl Med 2014; 55 (01) 147-153
  • 90 Cipriano PW, Lee SW, Yoon D. et al. Successful treatment of chronic knee pain following localization by a sigma-1 receptor radioligand and PET/MRI: a case report. J Pain Res 2018; 11: 2353-2357
  • 91 Griffith JF, van der Heijden RA. Bone marrow MR perfusion imaging and potential for tumor evaluation. Skeletal Radiol 2023; 52 (03) 477-491