Semin Musculoskelet Radiol 2023; 27(06): 649-654
DOI: 10.1055/s-0043-1775740
Review Article

Value of Edema-like Marrow Signal Intensity in Diagnosis of Joint Pain: Radiologists' Perspective

Dong Kyun Kim
1   Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
,
Sheen-Woo Lee
2   Department of Radiology, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
› Author Affiliations

Abstract

Musculoskeletal pain is a significant contributor to disability. The mechanism and target of the treatment should be optimized by imaging, but currently no accepted gold standard exists to image pain. In addition to end-organ pathology, other mediators also contribute to nociception, such as angiogenesis, axonal extension, immunologic modulation, and central sensitization. Recent research indicates that local inflammation is a significant contributor to pain in the extremities; therefore, we focus here on edema-like marrow signal intensity (ELMSI). We examine both the relevance of ELMSI for pain and novel imaging techniques.

Supplementary Material



Publication History

Article published online:
07 November 2023

© 2023. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 El-Tallawy SN, Nalamasu R, Salem GI, LeQuang JAK, Pergolizzi JV, Christo PJ. Management of musculoskeletal pain: an update with emphasis on chronic musculoskeletal pain. Pain Ther 2021; 10 (01) 181-209
  • 2 Heller DB, Beggin AE, Lam AH, Kohi MP, Heller MB. Geniculate artery embolization: role in knee hemarthrosis and osteoarthritis. Radiographics 2022; 42 (01) 289-301
  • 3 Epelboym Y, Mandell JC, Collins JE. et al. Genicular artery embolization as a treatment for osteoarthritis related knee pain: a systematic review and meta-analysis. Cardiovasc Intervent Radiol 2023; 46 (06) 760-769
  • 4 Kishore S, Sheira D, Malin ML, Trost DW, Mandl LA. Transarterial embolization for the treatment of chronic musculoskeletal pain: a systematic review of indications, safety, and efficacy. ACR Open Rheumatol 2022; 4 (03) 209-217
  • 5 Ro DH, Jang MJ, Koh J. et al. Mechanism of action of genicular artery embolization in a rabbit model of knee osteoarthritis. Eur Radiol 2023; 33 (01) 125-134
  • 6 Choi JW, Ro DH, Chae HD. et al. The value of preprocedural MR imaging in genicular artery embolization for patients with osteoarthritic knee pain. J Vasc Interv Radiol 2020; 31 (12) 2043-2050
  • 7 Felson DT, Niu J, Neogi T. et al; MOST Investigators Group. Synovitis and the risk of knee osteoarthritis: the MOST Study. Osteoarthritis Cartilage 2016; 24 (03) 458-464
  • 8 Vincent TL. Peripheral pain mechanisms in osteoarthritis. Pain 2020; 161 (1, Suppl 1): S138-S146
  • 9 Kavelaars A, Heijnen CJ. Immune regulation of pain: friend and foe. Sci Transl Med 2021; 13 (619) eabj7152
  • 10 Jayakar S, Shim J, Jo S, Bean BP, Singeç I, Woolf CJ. Developing nociceptor-selective treatments for acute and chronic pain. Sci Transl Med 2021; 13 (619) eabj9837
  • 11 Gil HC, Levine SM, Zoga AC. MRI findings in the subchondral bone marrow: a discussion of conditions including transient osteoporosis, transient bone marrow edema syndrome, SONK, and shifting bone marrow edema of the knee. Semin Musculoskelet Radiol 2006; 10 (03) 177-186
  • 12 Curtiss Jr PH, Kincaid WE. Transitory demineralization of the hip in pregnancy. A report of three cases. J Bone Joint Surg Am 1959; 41-A: 1327-1333
  • 13 Wilson AJ, Murphy WA, Hardy DC, Totty WG. Transient osteoporosis: transient bone marrow edema?. Radiology 1988; 167 (03) 757-760
  • 14 Zanetti M, Bruder E, Romero J, Hodler J. Bone marrow edema pattern in osteoarthritic knees: correlation between MR imaging and histologic findings. Radiology 2000; 215 (03) 835-840
  • 15 Gorbachova T, Amber I, Beckmann NM. et al. Nomenclature of subchondral nonneoplastic bone lesions. AJR Am J Roentgenol 2019; 213 (05) 963-982
  • 16 Maraghelli D, Brandi ML, Matucci Cerinic M, Peired AJ, Colagrande S. Edema-like marrow signal intensity: a narrative review with a pictorial essay. Skeletal Radiol 2021; 50 (04) 645-663
  • 17 Deely DM, Schweitzer ME. MR imaging of bone marrow disorders. Radiol Clin North Am 1997; 35 (01) 193-212
  • 18 Eustace S, Keogh C, Blake M, Ward RJ, Oder PD, Dimasi M. MR imaging of bone oedema: mechanisms and interpretation. Clin Radiol 2001; 56 (01) 4-12
  • 19 Rutishauser E, Rohner A, Held D. [Experimental studies on the effect of ischemia on the bone and marrow]. Virchows Arch Pathol Anat Physiol Klin Med 1960; 333: 101-118
  • 20 Schett G. Bone marrow edema. Ann N Y Acad Sci 2009; 1154: 35-40
  • 21 Szaro P, Geijer M, Solidakis N. Traumatic and non-traumatic bone marrow edema in ankle MRI: a pictorial essay. Insights Imaging 2020; 11 (01) 97
  • 22 Starr AM, Wessely MA, Albastaki U, Pierre-Jerome C, Kettner NW. Bone marrow edema: pathophysiology, differential diagnosis, and imaging. Acta Radiol 2008; 49 (07) 771-786
  • 23 Zhen G, Fu Y, Zhang C. et al. Mechanisms of bone pain: progress in research from bench to bedside. Bone Res 2022; 10 (01) 44
  • 24 Akhavan S, Martinkovich SC, Kasik C, DeMeo PJ. Bone marrow edema, clinical significance, and treatment options: a review. J Am Acad Orthop Surg 2020; 28 (20) e888-e899
  • 25 Eriksen EF, Ringe JD. Bone marrow lesions: a universal bone response to injury?. Rheumatol Int 2012; 32 (03) 575-584
  • 26 Hofmann S. The painful bone marrow edema syndrome of the hip joint. Wien Klin Wochenschr 2005; 117 (04) 111-120
  • 27 Hofmann S, Kramer J, Vakil-Adli A, Aigner N, Breitenseher M. Painful bone marrow edema of the knee: differential diagnosis and therapeutic concepts. Orthop Clin North Am 2004; 35 (03) 321-333 , ix
  • 28 Perez RS, Zollinger PE, Dijkstra PU. et al; CRPS I task force. Evidence based guidelines for complex regional pain syndrome type 1. BMC Neurol 2010; 10: 20
  • 29 Nishida Y, Saito Y, Yokota T, Kanda T, Mizusawa H. Skeletal muscle MRI in complex regional pain syndrome. Intern Med 2009; 48 (04) 209-212
  • 30 Agten CA, Kobe A, Barnaure I, Galley J, Pfirrmann CW, Brunner F. MRI of complex regional pain syndrome in the foot. Eur J Radiol 2020; 129: 109044
  • 31 Cappello ZJ, Kasdan ML, Louis DS. Meta-analysis of imaging techniques for the diagnosis of complex regional pain syndrome type I. J Hand Surg Am 2012; 37 (02) 288-296
  • 32 Yoon D, Xu Y, Cipriano PW. et al. Neurovascular, muscle, and skin changes on [18F]FDG PET/MRI in complex regional pain syndrome of the foot: a prospective clinical study. Pain Med 2022; 23 (02) 339-346
  • 33 Herber S, Runkel M, Pitton MB, Kalden P, Thelen M, Kreitner KF. Indirect MR-arthrography in the follow up of autologous osteochondral transplantation [in German]. Rofo 2003; 175 (02) 226-233
  • 34 Knights AJ, Redding SJ, Maerz T. Inflammation in osteoarthritis: the latest progress and ongoing challenges. Curr Opin Rheumatol 2023; 35 (02) 128-134
  • 35 Molfetta L, Florian A, Saviola G, Frediani B. Bone marrow edema: pathogenetic features. Clin Ter 2022; 173 (05) 434-439
  • 36 Major NM, Helms CA. MR imaging of the knee: findings in asymptomatic collegiate basketball players. AJR Am J Roentgenol 2002; 179 (03) 641-644
  • 37 Soder RB, Mizerkowski MD, Petkowicz R, Baldisserotto M. MRI of the knee in asymptomatic adolescent swimmers: a controlled study. Br J Sports Med 2012; 46 (04) 268-272
  • 38 Tarantino U, Greggi C, Cariati I. et al. Reviewing bone marrow edema in athletes: a difficult diagnostic and clinical approach. Medicina (Kaunas) 2021; 57 (11) 1143
  • 39 Kumar D, Wyatt CR, Lee S. et al. Association of cartilage defects, and other MRI findings with pain and function in individuals with mild-moderate radiographic hip osteoarthritis and controls. Osteoarthritis Cartilage 2013; 21 (11) 1685-1692
  • 40 Roemer FW, Neogi T, Nevitt MC. et al. Subchondral bone marrow lesions are highly associated with, and predict subchondral bone attrition longitudinally: the MOST study. Osteoarthritis Cartilage 2010; 18 (01) 47-53
  • 41 Zhang Y, Nevitt M, Niu J. et al. Fluctuation of knee pain and changes in bone marrow lesions, effusions, and synovitis on magnetic resonance imaging. Arthritis Rheum 2011; 63 (03) 691-699
  • 42 Felson DT, Chaisson CE, Hill CL. et al. The association of bone marrow lesions with pain in knee osteoarthritis. Ann Intern Med 2001; 134 (07) 541-549
  • 43 Kim IJ, Kim DH, Jung JY. et al. Association between bone marrow lesions detected by magnetic resonance imaging and knee pain in community residents in Korea. Osteoarthritis Cartilage 2013; 21 (09) 1207-1213
  • 44 Yusuf E, Kortekaas MC, Watt I, Huizinga TW, Kloppenburg M. Do knee abnormalities visualised on MRI explain knee pain in knee osteoarthritis? A systematic review. Ann Rheum Dis 2011; 70 (01) 60-67
  • 45 Arndt III WF, Truax AL, Barnett FM, Simmons GE, Brown DC. MR diagnosis of bone contusions of the knee: comparison of coronal T2-weighted fast spin-echo with fat saturation and fast spin-echo STIR images with conventional STIR images. AJR Am J Roentgenol 1996; 166 (01) 119-124
  • 46 Mueller D, Schaeffeler C, Baum T. et al. Magnetic resonance perfusion and diffusion imaging characteristics of transient bone marrow edema, avascular necrosis and subchondral insufficiency fractures of the proximal femur. Eur J Radiol 2014; 83 (10) 1862-1869
  • 47 Van der Woude HJ, Egmont-Petersen M. Contrast-enhanced magnetic resonance imaging of bone marrow. Semin Musculoskelet Radiol 2001; 5 (01) 21-33
  • 48 Chang MY, Lee SH, Ha JW, Park Y, Zhang HY, Lee SH. Predicting bone marrow edema and fracture age in vertebral fragility fractures using MDCT. AJR Am J Roentgenol 2020; 215 (04) 970-977
  • 49 Gosangi B, Mandell JC, Weaver MJ. et al. Bone marrow edema at dual-energy CT: a game changer in the emergency department. Radiographics 2020; 40 (03) 859-874
  • 50 Pache G, Krauss B, Strohm P. et al. Dual-energy CT virtual noncalcium technique: detecting posttraumatic bone marrow lesions—feasibility study. Radiology 2010; 256 (02) 617-624
  • 51 Ali IT, Wong WD, Liang T. et al. Clinical utility of dual-energy CT analysis of bone marrow edema in acute wrist fractures. AJR Am J Roentgenol 2018; 210 (04) 842-847
  • 52 Zuo T, Chen Y, Zheng H. et al. Detection of bone marrow edema in osteonecrosis of the femoral head using virtual noncalcium dual-energy computed tomography. Eur J Radiol 2021; 139: 109681 DOI: 10.1016/j.ejrad.2021.109681.
  • 53 Buck FM, Hoffmann A, Hofer B, Pfirrmann CW, Allgayer B. Chronic medial knee pain without history of prior trauma: correlation of pain at rest and during exercise using bone scintigraphy and MR imaging. Skeletal Radiol 2009; 38 (04) 339-347
  • 54 Fertakos RJ, Swayne LC, Colston WC. Three-phase bone imaging in bone marrow edema of the knee. Clin Nucl Med 1995; 20 (07) 587-590
  • 55 Burke CJ, Walter WR, Gaddam S. et al. Correlation of benign incidental findings seen on whole-body PET-CT with knee MRI: patterns of 18F-FDG avidity, intra-articular pathology, and bone marrow edema lesions. Skeletal Radiol 2018; 47 (12) 1651-1660
  • 56 Maas O, Joseph GB, Sommer G, Wild D, Kretzschmar M. Association between cartilage degeneration and subchondral bone remodeling in patients with knee osteoarthritis comparing MRI and (99m)Tc-DPD-SPECT/CT. Osteoarthritis Cartilage 2015; 23 (10) 1713-1720