Subscribe to RSS

DOI: 10.1055/s-0043-1775504
Sterically Controlled Template-Assisted Macrocyclization of Hemisquaraine Rotaxanes: Synthesis, Characterization, and DFT Calculations
Authors
This work was supported by the National Research Foundation of Ukraine, project No. 2023.05/0003 titled ‘Development of new materials based on supramolecular systems for biomedical and veterinary applications’.

Abstract
The encapsulation of squaraine dyes within a tetralactam macrocycle effectively mitigates their intrinsic limitations while maintaining favorable optical properties and improving both chemical and photochemical stability. However, the synthesis of such rotaxanes remains challenging due to the intricate balance of steric and electronic factors governing the macrocyclization. In this study, a series of rotaxanes derived from hemisquaraine dyes bearing primary and secondary amino groups was successfully synthesized using an oxocyclobutenolate template-assisted macrocyclization approach. Dyes with bulky tertiary amino groups, however, failed to undergo encapsulation. Upon encapsulation, the rotaxane systems in chloroform exhibited red-shifted absorption and emission bands, along with a substantial increase in fluorescence quantum yield. This enhancement is attributed to the restricted vibrational and rotational motions of the encapsulated dye. DFT calculations confirmed that all studied rotaxanes are thermodynamically viable, suggesting that the synthetic difficulties observed for tertiary amine derivatives arise from kinetic constraints. This hypothesis was supported by DFT calculations that simulated the macrocyclization process from the corresponding open-chain precursors. These calculations showed favorable energetics for hemisquaraine dyes that contain primary and secondary amino groups. In contrast, the significant steric effects of tertiary amino groups render the oxocyclobutenolate template-assisted macrocyclization energetically unfavorable.
Key words
template-assisted macrocyclization - squaraine dye - DFT calculations - fluorescence - rotaxane - organic synthesis - optical absorption - supramolecular systemSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0043-1775504.
- Supporting Information (PDF) (opens in new window)
Publication History
Received: 29 October 2025
Accepted after revision: 03 December 2025
Article published online:
05 January 2026
© 2026. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Ilina K, MacCuaig WM, Laramie M, Jeouty JN, McNally LR, Henary M. Bioconjugate Chem. 2020; 31: 194
- 2 Xia G, Wang H. J. Photochem. Photobiol., C 2017; 31: 84
- 3 Qiao W, Li Z. Symmetry 2022; 14: 966
- 4 Sarasiya S, Sarasiya S, Henary M. Pharmaceuticals 2023; 16: 1299
- 5 Kommidi SS. R, Atkinson KM, Smith BD. J. Mater. Chem. B 2024; 12: 8310
- 6 Sreejith S, Joseph J, Lin M, Menon NV, Borah P, Ng HJ, Loong YX, Kang Y, Yu SW.-K, Zhao Y. ACS Nano 2015; 9: 5695
- 7 Dong S, Teo JD. W, Chan LY, Lee C.-LK, Sou K. ACS Appl. Nano Mater. 2018; 1: 1009
- 8 Luo C, Zhou Q, Lei W, Wang J, Zhang B, Wang X. Supramol. Chem. 2011; 23: 657
- 9 Arun KT, Jayaram DT, Avirah RR, Ramaiah D. J. Phys. Chem. B 2011; 115: 7122
- 10 Zhang Y, Luo X, Li H, Sun S, Xu Y. Chem. Eng. J. 2024; 488: 150979
- 11 Xu Y, Panzner MJ, Li X, Youngs WJ, Pang Y. Chem. Commun. 2010; 46: 4073
- 12 Das S, Thomas KG, George MV, Kamat PV. J. Chem. Soc., Faraday Trans. 1992; 88: 3419
- 13 Arunkumar E, Forbes CC, Noll BC, Smith BD. J. Am. Chem. Soc. 2005; 127: 3288
- 14 Gassensmith JJ, Baumes JM, Smith BD. Chem. Commun. 2009; 6329
- 15 Lau JY, Shi K, Oliver AG, Smith BD. Org. Lett. 2025; 27: 8083
- 16 Gassensmith JJ, Matthys S, Lee J, Wojcik A, Kamat PV, Smith BD. Chem. Eur. J. 2010; 16: 2916
- 17 Collins CG, Peck EM, Kramer PJ, Smith BD. Chem. Sci. 2013; 4: 2557
- 18 Barclay MS, Roy SK, Huff JS, Mass OA, Turner DB, Wilson CK, Kellis DL, Terpetschnig EA, Lee J, Davis PH, Yurke B, Knowlton WB, Pensack RD. Commun. Chem. 2021; 4: 19
- 19 Barclay MS, Wilson CK, Roy SK, Mass OA, Obukhova OM, Svoiakov RP, Tatarets AL, Chowdhury AU, Huff JS, Turner DB, Davis PH, Terpetschnig EA, Yurke B, Knowlton WB, Lee J, Pensack RD. ChemPhotoChem 2022; 6: e202200039
- 20 Wasternack J, Schröder HV, Witte JF, Ilisson M, Hupatz H, Hille JF, Gaedke M, Valkonen AM, Sobottka S, Krappe A, Schubert M, Paulus B, Rissanen K, Sarkar B, Eigler S, Resch-Genger U, Schalley CA. Commun. Chem. 2024; 7: 229
- 21 Zhai C, Schreiber CL, Padilla-Coley S, Oliver AG, Smith BD. Angew. Chem. Int. Ed. 2020; 59: 23740
- 22 Shaw SK, Liu W, Gómez Durán CF. A, Schreiber CL, Betancourt Mendiola M. dL, Zhai C, Roland FM, Padanilam SJ, Smith BD. Chem. Eur. J. 2018; 24: 13821
- 23 Schreiber CL, Zhai C, Smith BD. Org. Biomol. Chem. 2021; 19: 3213
- 24 Das RS, Saha PC, Sepay N, Mukherjee A, Chatterjee S, Guha S. Org. Lett. 2020; 22: 5839
- 25 Jarvis TS, Collins CG, Dempsey JM, Oliver AG, Smith BD. J. Org. Chem. 2017; 82: 5819
- 26 Fu N, Baumes JM, Arunkumar E, Noll BC, Smith BD. J. Org. Chem. 2009; 74: 6462
- 27 Svoiakov RP, Kulyk OG, Hovor IV, Shishkina SV, Tatarets AL. Dyes Pigm. 2023; 219: 111612
- 28 Jacquemin D, Wathelet V, Perpète EA, Adamo C. J. Chem. Theory Comput. 2009; 5: 2420
- 29 Fu N, Gassensmith JJ, Smith BD. Supramol. Chem. 2009; 21: 118
- 30 Dempsey JM, Zhang Q.-W, Oliver AG, Smith BD. Org. Biomol. Chem. 2018; 16: 8976
- 31 Collins CG, Baumes JM, Smith BD. Chem. Commun. 2011; 47: 12352
- 32 Farias FF. S, Weimer GH, Kunz SK, Salbego PR. S, Orlando T, Martins MA. P. J. Mol. Liq. 2023; 385: 122291
- 33 Li D.-H, Smith BD. Beilstein J. Org. Chem. 2019; 15: 1086
- 34 Leigh DA, Murphy A, Smart JP, Slawin AM. Z. Angew. Chem., Int. Ed. Engl. 1997; 36: 728
- 35 Gatti FG, Leigh DA, Nepogodiev SA, Slawin AM. Z, Teat SJ, Wong JK. Y. J. Am. Chem. Soc. 2001; 123: 5983
- 36 Brancato G, Coutrot F, Leigh DA, Murphy A, Wong JK. Y, Zerbetto F. Proc. Natl. Acad. Sci. U. S. A. 2002; 99: 4967
- 37 Magde D, Wong R, Seybold PG. Photochem. Photobiol. 2002; 75: 327
- 38 Brauer B, Kesharwani MK, Kozuch S, Martin JM. L. Phys. Chem. Chem. Phys. 2016; 18: 20905
- 39 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA. Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ. Gaussian 16, Revision C.01; Gaussian, Inc.: Wallingford, CT. 2016