Subscribe to RSS
DOI: 10.1055/s-0043-1775469
Synthesis of Benzo-Fused Cycloheptanones from Cyclobutanol Derivatives by a C–C Cleavage/Cross-Coupling/Enolate Arylation Sequence
R.S. is grateful to the National Institute of General Medical Sciences (R35GM130345). G.L.P. thanks the National Science Foundation for support by the NSF Graduate Research Fellowship Program (DGE 2146752). This material is based upon work supported by the NSF Graduate Research Fellowship Program under Grant No. DGE 2146752. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Abstract
Herein, we describe a convergent method for the synthesis of benzo-fused cycloheptanones from cyclobutanol derivatives and 1,2-dihaloarene electrophiles. The inherent ring strain of the cyclobutanol coupling partner is leveraged to drive a Pd-catalyzed C–C cleavage/cross-coupling. A subsequent intramolecular enolate arylation results in the formation of the benzo-fused seven-membered carbocycle in a one-pot sequence. A range of electronically diverse 1,2-dihaloarene electrophiles as well as various substituted cyclobutanols were investigated as cross-coupling partners.
Key words
C–C cleavage - Pd-catalyzed cross-coupling - benzocycloheptanones - cyclobutanols - 1,2-dihaloarenes - one-pot synthesisSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0043-1775469.
- Supporting Information
- CIF File
Publication History
Received: 05 February 2025
Accepted after revision: 13 March 2025
Article published online:
14 April 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Battaglia R, De Bernardi M, Mellerio GF. G, Vidari G, Vita-Finsi P. J. Nat. Prod. 1980; 43: 319
- 2 Simmons EM, Sarpong R. Nat. Prod. Rep. 2009; 26: 1195
- 3 Jin P, Zheng G, Yuan X, Ma X, Feng Y, Yao G. Bioorg. Chem. 2021; 111: 104870
- 4 Fan Y.-Y, Zhang X.-R, Zheng C.-Y, Li Y, Yue J.-M. Tetrahedron 2024; 152: 133841
- 5 Kagan HB, Riant O. Chem. Rev. 1992; 92: 1007
- 6 Morgan TD. R, LeBlanc LM, Ardagh GH, Boyd RJ, Burnell DJ. J. Org. Chem. 2015; 80: 1042
- 7 Li H, Wu J. Synthesis 2015; 47: 22
- 8 Geis O, Schmalz H.-G. Angew. Chem. Int. Ed. 1998; 37: 911
- 9 Reisman SE, Nani RR, Levin S. Synlett 2011; 2437
- 10 Hudlicky T, Fan R, Reed JW, Gadamasetti KG. Org. React. 1992; 41: 1
- 11 Smith PA. S, Baer DR. Org. React. 1960; 11: 157
- 12 Pellissier H. Adv. Synth. Catal. 2018; 360: 1551
- 13 Yin Z, He Y, Chiu P. Chem. Soc. Rev. 2018; 47: 8881
- 14 Zhang R, Xia Y, Dong G. Angew. Chem. Int. Ed. 2021; 60: 20476
- 15 Paulisch TO, Mai LA, Strieth-Kalthoff F, James MJ, Henkel C, Guldi DM, Glorius F. Angew. Chem. Int. Ed. 2022; 61: e202112695
- 16 Xing Z, Fang B, Luo S, Xie X, Wang X. Org. Lett. 2022; 24: 4034
- 17 Jain R, Sponsler MB, Coms FD, Dougherty DA. J. Am. Chem. Soc. 1988; 110: 1356
- 18 Shi Z, Lu L, Lu P. Org. Lett. 2024; 26: 5353
- 19 Bhosale VA, Nigríni M, Dračínský M, Císařová I, Veselý J. Org. Lett. 2021; 23: 9376
- 20 Sietmann J, Tenberge M, Wahl JM. Angew. Chem. Int. Ed. 2023; 62: e202215381
- 21 Andersh B, Murphy DL, Olson RJ. Synth. Commun. 2000; 30: 2091
- 22 Kogashi K, Matsuno T, Sato S, Isobe H. Angew. Chem. Int. Ed. 2019; 58: 7385
- 23 Sanz R, Castroviejo MP, Fernández Y, Fañanás FJ. J. Org. Chem. 2005; 70: 6548
- 24 Menzel K, Dimichele L, Mills P, Frantz DE, Nelson TD, Kress MH. Synlett 2006; 1948
- 25 Li C.-M, Geng H.-C, Li M.-M, Xu G, Ling T.-J, Qin H.-B. Nat. Prod. Bioprospect. 2013; 3: 117
- 26 Chen T, Peng R, Hu W, Zhang F.-M. Org. Biomol. Chem. 2016; 14: 9859