RSS-Feed abonnieren
DOI: 10.1055/s-0043-1775427
Synthetic Approaches toward the Batzelladine Class of Guanidinium Alkaloids
We are grateful to the National Institute of General Medical Sciences (NIGMS) (National Institutes of Health (R35GM139583) for the generous support of our natural product synthesis and chemical biology program and to North Carolina State University for funding support of our program.

Abstract
Polycyclic guanidinium alkaloids (PGAs) are a class of nitrogen-containing marine natural products characterized by a vessel unit, a linker, and an anchor unit. Batzelladines, a specific subclass of PGAs, exhibit diverse biological activities and structural complexities. This short review discusses various synthetic methods developed to access batzelladine natural products, highlighting the key disconnections utilized in each synthetic strategy.
1 Introduction
2 Polycyclic Guanidinium Alkaloids
3 Batzelladine Natural Products
4 Strategies in Batzelladine Synthesis
4.1 Aza-Michael Addition
4.2 Biginelli Condensation
4.3 1,3-Dipolar Cycloaddition
4.4 [4+2] Annulation of N-Alkyl Imines and Vinyl Carbodiimides
4.5 Free-Radical Cyclization
4.6 Palladium-Catalyzed Carboamination
4.7 Rhodium-Catalyzed [4+3] Cycloaddition
4.8 A Bicyclic β-Lactam Intermediate
5 Non-Total Synthesis Contributions
6 Conclusion
Publikationsverlauf
Eingereicht: 18. Oktober 2024
Angenommen nach Revision: 28. November 2024
Artikel online veröffentlicht:
07. Januar 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Valdes-Pena MA, Massaro NP, Lin Y.-C, Pierce JG. Acc. Chem. Res. 2021; 54: 1866
- 2 Newman DJ, Cragg GM. J. Nat. Prod. 2020; 83: 770
- 3 Valdes-Pena MA, Pierce JG. Med. Chem. Rev. 2023; 58: 315
- 4 Blunt JW, Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR. Nat. Prod. Rep. 2018; 35: 8
- 5 Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR. Nat. Prod. Rep. 2020; 37: 175
- 6 Pereira F. Expert Opin. Drug Discovery 2019; 14: 717
- 7 Ghareeb MA, Tammam MA, El-Demerdash A, Atanasov AG. Curr. Res. Biotechnol. 2020; 2: 88
- 8 Cappello E, Nieri P. Life 2021; 11: 1390
- 9 Lu W.-Y, Li H.-J, Li Q.-Y, Wu Y.-C. Bioorg. Med. Chem. 2021; 35: 116058
- 10 Newman D, Cragg G. Planta Med. 2016; 82: 775
- 11 Shi Y, Moazami Y, Pierce JG. Bioorg. Med. Chem. 2017; 25: 2817
- 12 Kashman Y, Hirsh S, McConnell OJ, Ohtani I, Kusumi T, Kakisawa H. J. Am. Chem. Soc. 1989; 111: 8925
- 13 Patil AD, Kumar NV, Kokke WC, Bean MF, Freyer AJ, De Brosse C, Mai S, Truneh A, Faulkner DJ, Carte B, Breen AL, Hertzberg RP, Johnson RK, Westley JW, Potts BC. M. J. Org. Chem. 1995; 60: 1182
- 14 Patil AD, Freyer AJ, Taylor PB, Carté B, Zuber G, Johnson RK, Faulkner DJ. J. Org. Chem. 1997; 62: 1814
- 15 Olszewski A, Sato K, Aron ZD, Cohen F, Harris A, McDougall BR, Robinson WE, Overman LE, Weiss GA. Proc. Natl. Acad. Sci. U.S.A. 2004; 101: 14079
- 16 Gallimore WA, Kelly M, Scheuer PJ. J. Nat. Prod. 2005; 68: 1420
- 17 Hua H.-M, Peng J, Dunbar DC, Schinazi RF, de Castro Andrews AG, Cuevas C, Garcia-Fernandez LF, Kelly M, Hamann MT. Tetrahedron 2007; 63: 11179
- 18 Dyshlovoy SA, Shubina LK, Makarieva TN, Guzii AG, Hauschild J, Strewinsky N, Berdyshev DV, Kudryashova EK, Menshov AS, Popov RS, Dmitrenok PS, Graefen M, Bokemeyer C, von Amsberg G. Mar. Drugs 2022; 20: 738
- 19 Rani NZ. A, Lee YK, Ahmad S, Meesala R, Abdullah I. Mar. Drugs 2022; 20: 579
- 20 Nagasawa K, Hashimoto Y. Chem. Rec. 2003; 3: 201
- 21 Sfecci E, Lacour T, Amade P, Mehiri M. Mar. Drugs. 2016; 14: 77
- 22 Snider BB, Chen J, Patil AD, Freyer AJ. Tetrahedron Lett. 1996; 37: 6977
- 23 Snider BB, Chen J. Tetrahedron Lett. 1998; 39: 5697
- 24 Snider BB, Busuyek MV. J. Nat. Prod. 1999; 62: 1707
- 25 Ahmed N, Brahmbhatt K, Singh I, Bhutani K. Synthesis 2010; 2567
- 26 Cohen F, Overman LE, Ly Sakata SK. Org. Lett. 1999; 1: 2169
- 27 Aron ZD, Overman LE. Chem. Commun. 2003; 253
- 28 Overman LE, Wolfe JP. J. Org. Chem. 2001; 66: 3167
- 29 Cohen F, Overman LE. J. Am. Chem. Soc. 2001; 123: 10782
- 30 Collins SK, McDonald AI, Overman LE, Rhee YH. Org. Lett. 2004; 6: 1253
- 31 Franklin AS, Ly SK, Mackin GH, Overman LE, Shaka AJ. J. Org. Chem. 1999; 64: 1512
- 32 Ishiwata T, Hino T, Koshino H, Hashimoto Y, Nakata T, Nagasawa K. Org. Lett. 2002; 4: 2921
- 33 Shimokawa J, Ishiwata T, Shirai K, Koshino H, Tanatani A, Nakata T, Hashimoto Y, Nagasawa K. Chem. Eur. J. 2005; 11: 6878
- 34 Sekine M, Iijima Y, Iwamoto O, Nagasawa K. Heterocycles 2010; 80: 395
- 35 Nagasawa K, Koshino H, Nakata T. Tetrahedron Lett. 2001; 42: 4155
- 36 Arnold MA, Durón SG, Gin DY. J. Am. Chem. Soc. 2005; 127: 6924
- 37 Duron SG, Gin DY. Org. Lett. 2001; 3: 1551
- 38 Arnold MA, Day KA, Durón SG, Gin DY. J. Am. Chem. Soc. 2006; 128: 13255
- 39 Evans PA, Qin J, Robinson JE, Bazin B. Angew. Chem. Int. Ed. 2007; 46: 7417
- 40 Babij NR, Wolfe JP. Angew. Chem. Int. Ed. 2012; 51: 4128
- 41 Babij NR, Wolfe JP. Angew. Chem. Int. Ed. 2013; 52: 9247
- 42 Parr BT, Economou C, Herzon SB. Nature 2015; 525: 507
- 43 Economou C, Romaire JP, Scott TZ, Parr BT, Herzon SB. Tetrahedron 2018; 74: 3188
- 44 Lin Y.-C, Ribaucourt A, Moazami Y, Pierce JG. J. Am. Chem. Soc. 2020; 142: 9850
- 45 Rao AV. R, Gurjar MK, Vasudevan J. J. Chem. Soc., Chem. Commun. 1995; 1369
- 46 Black GP, Murphy PJ, Walshe ND. A. Tetrahedron 1998; 54: 9481
- 47 Black GP, Murphy PJ, Thornhill AJ, Walshe ND. A, Zanetti C. Tetrahedron 1999; 55: 6547
- 48 Black GP, Murphy PJ, Walshe ND. A, Hibbs DE, Hursthouse MB, Abdul Malik KM. Tetrahedron Lett. 1996; 37: 6943
- 49 El-Demerdash A, Ermolenko L, Gros E, Retailleau P, Thanh BN, Gauvin-Bialecki A, Al-Mourabit A. Eur. J. Org. Chem. 2020; 5677
- 50 Butters M, Davies CD, Elliott MC, Hill-Cousins J, Kariuki BM, Ooi L, Wood JL, Wordingham SV. Org. Biomol. Chem. 2009; 7: 5001