Subscribe to RSS
DOI: 10.1055/s-0043-1775385
Tactics and Strategies for the Synthesis of Cereblon Ligands
Dedicated to Prof. Erick M. Carreira on the occasion of his 60th birthday.
Abstract
Targeted protein degradation (TPD) has emerged as an important strategy to target disease-relevant proteins that were previously considered difficult to drug or even undruggable. Cereblon (CRBN) plays an outsized role in TPD as a preferred degradation-inducing effector protein for several reasons, including its anticipated broad protein substrate scope and its ligandability with drug-like small molecules. Notably, CRBN-based molecular glue degraders (MGDs) and proteolysis targeting chimeras (PROTACs) have shown success in clinical trials and, in some cases, as approved drugs. Thus, the interest in CRBN ligands within the pharmaceutical industry and academia has increased dramatically in recent years, highlighting the need for robust synthetic approaches towards them. This short review summarizes tactics and strategies to synthesize CRBN ligands, including the most recent developments in the field. Particular emphasis is put on the construction and direct functionalization of key CRBN binding motifs such as glutarimides and dihydrouracils.
1 Introduction
2 Cereblon Ligands with Glutarimide Binding Motif
3 Cereblon Ligands with Dihydrouracil Binding Motif
4 Cereblon Ligands with Other Binding Motifs
5 Conclusions and Outlook
Key words
IMiDs - glutarimide - dihydrouracil - molecular glues - bivalent degraders - cereblon - drugs - medicinal chemistryPublication History
Received: 30 March 2024
Accepted after revision: 25 June 2024
Article published online:
16 July 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Quach H, Ritchie D, Stewart AK, Neeson P, Harrison S, Smyth MJ, Prince HM. Leukemia 2010; 24: 22
- 1b Pan B, Lentzsch S. Pharmacol. Ther. 2012; 136: 56
- 2a Ito T, Ando H, Suzuki T, Ogura T, Hotta K, Imamura Y, Yamaguchi Y, Handa H. Science 2010; 327: 1345
- 2b Krönke J, Hurst SN, Ebert BL. OncoImmunology 2014; 3: e941742
- 2c Lu G, Middleton RE, Sun H, Naniong M, Ott CJ, Mitsiades CS, Wong K.-K, Bradner JE, Kaelin WG. Jr. Science 2014; 343: 305
- 3 Beacon TPD database by Hansonwade; https://www.beacon-intelligence.com/solutions/tpd/ (accessed July 12, 2024)
- 4a Poongavanam V, Kihlberg J. Future Med. Chem. 2021; 14: 123
- 4b Hornberger KR, Araujo EM. V. J. Med. Chem. 2023; 66: 8281
- 4c https://www.proteinatlas.org/ENSG00000113851-CRBN (accessed July 8, 2024).
- 5 Pike A, Williamson B, Harlfinger S, Martin S, McGinnity DF. Drug Discovery Today 2020; 25: 1793
- 6a Nishimura K, Hashimoto Y, Iwasaki S. Chem. Pharm. Bull. 1994; 42: 1157
- 6b Knoche B, Blaschke G. J. Chromatogr. A 1994; 666: 235
- 6c Tokunaga E, Yamamoto T, Ito E, Shibata N. Sci. Rep. 2018; 8: 17131
- 7 Boichenko I, Bär K, Deiss S, Heim C, Albrecht R, Lupas AN, Alvarez BH, Hartmann MD. ACS Omega 2018; 3: 11163
- 8a Jarusiewicz JA, Yoshimura S, Mayasundari A, Actis M, Aggarwal A, McGowan K, Yang L, Li Y, Fu X, Mishra V, Heath R, Narina S, Pruett-Miller SM, Nishiguchi G, Yang JJ, Rankovic Z. ACS Med. Chem. Lett. 2023; 14: 141
- 8b Xie H, Li C, Tang H, Tandon I, Liao J, Roberts BL, Zhao Y, Tang W. J. Med. Chem. 2023; 66: 2904
- 9 For a review focusing on the functionalization and derivatization of CRBN ligand cores, see: Sosič I, Bricelj A, Steinebach C. Chem. Soc. Rev. 2022; 51: 3487
- 10a Keller H, Kunz W. US2830991A, 1958
- 10b Shibata N, Yamamoto T, Toru T. Top. Heterocycl. Chem. 2007; 8: 73 ; and references therein
- 11 Muller GW, Konnecke WE, Smith AM, Khetani VD. Org. Process Res. Dev. 1999; 3: 139
- 12a Varala R, Adapa SR. Org. Process Res. Dev. 2005; 9: 853
- 12b Benjamin E, Hijji YM. J. Chem. 2017; 2017: 6436185
- 12c Vu BD, Ba NM. H, Phan DC. Org. Process Res. Dev. 2019; 23: 1374
- 13 Hansen JD, Correa M, Nagy MA, Alexander M, Plantevin V, Grant V, Whitefield B, Huang D, Kercher T, Harris R, Narla RK, Leisten J, Tang Y, Moghaddam M, Ebinger K, Piccotti J, Havens CG, Cathers B, Carmichael J, Daniel T, Vessey R, Hamann LG, Leftheris K, Mendy D, Baculi F, LeBrun LA, Khambatta G, Lopez-Girona A. J. Med. Chem. 2020; 63: 6648
- 14 Matyskiela ME, Zhang W, Man H.-W, Muller G, Khambatta G, Baculi F, Hickman M, LeBrun L, Pagarigan B, Carmel G, Lu C.-C, Lu G, Riley M, Satoh Y, Schafer P, Daniel TO, Carmichael J, Cathers BE, Chamberlain PP. J. Med. Chem. 2018; 61: 535
- 15a Zacuto MJ, Traverse JF, Bostwick KF, Geherty ME, Primer DN, Zhang W, Zhang C, Janes RD, Marton C. Org. Process Res. Dev. 2024; 28: 46
- 15b Zacuto MJ, Traverse JF, Geherty ME, Bostwick KF, Jordan C, Zhang C. Org. Process Res. Dev. 2024; 28: 57
- 16 Mathias LJ. Synthesis 1979; 561
- 17 Min J, Mayasundari A, Keramatnia F, Jonchere B, Yang SW, Jarusiewicz J, Actis M, Das S, Young B, Slavish J, Yang L, Li Y, Fu X, Garrett SH, Yun MK, Li Z, Nithianantham S, Chai S, Chen T, Shelat A, Lee RE, Nishiguchi G, White SW, Roussel MF, Potts PR, Fischer M, Rankovic Z. Angew. Chem. Int. Ed. 2021; 60: 26663
- 18 Norris S, Ba X, Rhodes J, Huang D, Khambatta G, Buenviaje J, Nayak S, Meiring J, Reiss S, Xu S, Shi L, Whitefield B, Alexander M, Horn EJ, Correa M, Tehrani L, Hansen JD, Papa P, Mortensen DS. J. Med. Chem. 2023; 66: 16388
- 19a Phillips AJ, Nasveschuck CG, Henderson JA, Liang Y, Chen C.-L, Duplessis M, He M, Lazarski K. WO2017197051A1, 2017
- 19b Phillips AJ, Nasveschuck CG, Henderson JA, Liang Y, He M, Duplessis M, Chen C.-L. WO2018237026A1, 2018
- 20 Ronnebaum JM, Luzzio FA. Tetrahedron 2016; 72: 6136
- 21 Teng M, Lu W, Donovan KA, Sun J, Krupnick NM, Nowak RP, Li Y.-D, Sperling AS, Zhang T, Ebert BL, Fischer ES, Gray NS. J. Med. Chem. 2022; 65: 747
- 22a Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
- 22b Arias-Rotondo DM, McCusker JK. Chem. Soc. Rev. 2016; 45: 5803
- 23 Romero NA, Margrey KA, Tay NE, Nicewicz DA. Science 2015; 349: 1326
- 24 Phillips AJ, Nasveschuck CG, Henderson JA, Liang Y, He M, Lazarski K, Veits GK, Vora HU. WO2017197046A1, 2017
- 25a Neigenfind P, Massaro L, Péter Á, Degnan A, Emmanuel M, Oderinde M, He C, Peters D, Ewing TE.-H, Kawamata Yu, Baran PS. Angew. Chem. Int. Ed. 2024; 63: e202319856
- 25b Chen L.-M, Shin C, DeLano TJ, Reisman SE. ChemRxiv. 2023; preprint; DOI: DOI: 10.26434/chemrxiv-2023-97hjq.
- 26 Zacuto MJ, Williams MJ, Zhang W, Han J, Beauchamps MG, Kothare M, Konnecke W, Smith R, Feigelson G. Org. Process Res. Dev. 2022; 26: 2739
- 27 Huang D, Shen C, Wang W, Huang L, Ni F, Li J. Synth. Commun. 2016; 46: 1343
- 28 Mori T, Ito T, Liu S, Ando H, Sakamoto S, Yamaguchi Y, Tokunaga E, Shibata N, Handa H, Hakoshima T. Sci. Rep. 2018; 8: 1294
- 29 Suzuki E, Shibata N. Enantiomer 2001; 6: 275
- 30a Krasavin M, Adamchik M, Bubyrev A, Heim C, Maiwald S, Zhukovsky D, Zhmurov P, Bunev A, Hartmann MD. Eur. J. Med. Chem. 2023; 246: 114990
- 30b Adamchik M, Bubyrev A, Zhukovsky D, Zhmurov P, Bunev A, Krasavin M. Mendeleev Commun. 2023; 33: 67
- 31 Evidence for the feasibility of this approach exists in the scientific literature, see for example: Kundu NG, Khatri SG. Synthesis 1985; 323
- 32 Zhu X, Giordano T, Yu Q.-s, Holloway HW, Perry TA, Lahiri DK, Brossi A, Greig NH. J. Med. Chem. 2003; 46: 5222
- 33 Luo W, Yu Q.-s, Tweedie D, Deschamps J, Parrish D, Holloway HW, Li Y, Brossi A, Greig NH. Synthesis 2008; 3415
- 34 Scerba MT, Siegler MA, Greig NH. Synlett 2021; 31: 917
- 35 Hsueh SC, Scerba MT, Tweedie D, Lecca D, Kim DS, Baig AM, Kim YK, Hwang I, Kim S, Selman WR, Hoffer BJ, Greig NH. Biomedicines 2022; 10: 2449
- 36 Burkhard JA, Wuitschik G, Plancher J.-M, Rogers-Evans M, Carreira EM. Org. Lett. 2013; 15: 4312
- 37 Czekelius C, Carreira EM. Angew. Chem. Int. Ed. 2005; 44: 612
- 38a Burkhard JA, Wuitschik G, Rogers-Evans M, Müller K, Carreira EM. Angew. Chem. Int. Ed. 2010; 49: 9052
- 38b Wuitschik G, Carreira EM, Wagner B, Fischer H, Parrilla I, Schuler F, Rogers-Evans M, Müller K. J. Med. Chem. 2010; 53: 3227
- 38c Rojas JJ, Bull JA. J. Med. Chem. 2023; 66: 12697
- 39 Heim C, Pliatsika D, Mousavizadeh F, Bär K, Hernandez Alvarez B, Giannis A, Hartmann MD. J. Med. Chem. 2019; 62: 6615
- 40a Ichikawa S, Flaxman HA, Xu W, Vallavoju N, Lloyd HC, Wang B, Shen D, Pratt MR, Woo CM. Nature 2022; 610: 775
- 40b Heim C, Spring A.-K, Kirchgäßner S, Schwarzer D, Hartmann MD. Biochem. Biophys. Res. Commun. 2022; 637: 66
- 41 Oleinikovas V, Gainza P, Ryckmans T, Fasching B, Thomä NH. Annu. Rev. Pharmacol. Toxicol. 2024; 64: 291
For examples, see:
For reviews on the use of oxetanes in drug discovery, see: