Synthesis
DOI: 10.1055/s-0043-1775384
paper
SuFEx Chemistry

A Convenient One-Pot Process for Converting Thiols into Sulfonyl Fluorides Using H2O2 as an Oxidant

Guang Tao
a   School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, P. R. of China
,
Eman Fayad
b   Department of Biotechnology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
,
Ola A. Abu Ali
c   Department of Chemistry, College of Science, Taif University, Taif 21944, Saudi Arabia
,
Bright Oyom
a   School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, P. R. of China
,
Hua-Li Qin
a   School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, P. R. of China
› Author Affiliations
We are grateful to the National Natural Science Foundation of China (Grant No. 22071190) and Wuhan University of Technology for financial support. The authors also extend our appreciation to Taif University, Saudi Arabia, for supporting this work through project number (TU-DSPP-2024-85).


Abstract

A novel protocol for synthesizing sulfonyl fluorides from thiols in one pot is reported. Utilizing SOCl2 and H2O2 as low-cost and convenient reagents allows the direct oxidative chlorination of readily available thiol derivatives to give the corresponding sulfonyl chlorides, with subsequent fluoride–chloride exchange mediated by KHF2 giving access to the desired sulfonyl fluorides. This transformation features mild conditions, operational simplicity and high efficiency, and utilizes a broad substrate scope, including a variety of aryl, alkyl, benzyl and heteroaryl thiols.

Supporting Information



Publication History

Received: 24 April 2024

Accepted after revision: 25 June 2024

Article published online:
19 July 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Dong J, Krasnova L, Finn MG, Sharpless KB. Angew. Chem. Int. Ed. 2014; 53: 9430
    • 2a Chinthakindi PK, Arvidsson PI. Eur. J. Org. Chem. 2018; 3648
    • 2b Barrow AS, Smedley CJ, Zheng Q, Li S, Dong J, Moses JE. Chem. Soc. Rev. 2019; 48: 4731
    • 2c Fang W.-Y, Wang S.-M, Zhang Z.-W, Qin H.-L. Org. Lett. 2020; 22: 8904
    • 2d Xu L, Dong J. Chin. J. Chem. 2020; 38: 414
    • 3a Meng G, Guo T, Ma T, Zhang J, Shen Y, Sharpless KB, Dong J. Nature 2019; 574: 86
    • 3b Moku B, Fang W.-Y, Leng J, Li L, Zha G.-F, Rakesh K, Qin H.-L. iScience 2019; 21: 695
    • 3c Giel MC, Smedley CJ, Mackie ER, Guo T, Dong J, Soares da Costa TP, Moses JE. Angew. Chem. Int. Ed. 2020; 59: 1181
    • 3d Zhang X, Huang Y.-M, Qin H.-L, Baoguo Z, Rakesh KP, Tang H. ACS Omega 2021; 6: 25972
    • 3e Zhang X, Fang W.-Y, Qin H.-L. Org. Lett. 2022; 24: 4046
    • 3f Wang P, Zhang H, Nie X, Xu T, Liao S. Nat. Commun. 2022; 13: 3370
    • 3g Feng Q, Fu Y, Zheng Y, Liao S, Huang S. Org. Lett. 2022; 24: 3702
    • 4a Mortenson DE, Brighty GJ, Plate L, Bare G, Chen W, Li S, Wang H, Cravatt BF, Forli S, Powers ET, Sharpless KB, Wilson IA, Kelly JW. J. Am. Chem. Soc. 2018; 140: 200
    • 4b Liu Z, Li J, Li S, Li G, Sharpless KB, Wu P. J. Am. Chem. Soc. 2018; 140: 2919
    • 5a Chen W, Dong J, Plate L, Mortenson DE, Brighty GJ, Li S, Liu Y, Galmozzi A, Lee PS, Hulce JJ, Cravatt BF, Saez E, Powers ET, Wilson IA, Sharpless KB, Kelly JW. J. Am. Chem. Soc. 2016; 138: 7353
    • 5b Shishido Y, Tomoike F, Kimura Y, Kuwata K, Yano T, Fukui K, Fujikawa H, Sekido Y, Murakami-Tonami Y, Kameda T, Shuto S, Abe H. Chem. Commun. 2017; 53: 11138
    • 5c Zhao Q, Ouyang X, Wan X, Gajiwala KS, Kath JC, Jones LH, Burlingame AL, Taunton J. J. Am. Chem. Soc. 2017; 139: 680
    • 6a Gao B, Zhang L, Zheng Q, Zhou F, Klivansky LM, Lu J, Liu Y, Dong J, Wu P, Sharpless KB. Nat. Chem. 2017; 9: 1083
    • 6b Yang C, Flynn JP, Niu J. Angew. Chem. Int. Ed. 2018; 57: 16194
    • 6c Randall JD, Eyckens DJ, Stojcevski F, Francis PS, Doeven EH, Barlow AJ, Barrow AS, Arnold CL, Moses JE, Henderson LC. ChemPhysChem 2018; 19: 3176
    • 7a Dubiella C, Cui H, Gersch M, Brouwer AJ, Sieber SA, Krüger A, Liskamp RM. J, Groll M. Angew. Chem. Int. Ed. 2014; 53: 11969
    • 7b Narayanan A, Jones LH. Chem. Sci. 2015; 6: 2650
    • 7c Hett EC, Xu H, Geoghegan KF, Gopalsamy A, Kyne RE, Menard CA, Narayanan A, Parikh MD, Liu S, Roberts L, Robinson RP, Tones MA, Jones LH. ACS Chem. Biol. 2015; 10: 1094
    • 7d Artschwager R, Ward DJ, Gannon S, Brouwer AJ, van de Langemheen H, Kowalski H, Liskamp RM. J. J. Med. Chem. 2018; 61: 5395
    • 7e Xu R, Xu T, Yang M, Cao T, Liao S. Nat. Commun. 2019; 10: 3752
    • 7f Grimster NP, Connelly S, Baranczak A, Dong J, Krasnova LB, Sharpless KB, Powers ET, Wilson IA, Kelly JW. J. Am. Chem. Soc. 2013; 135: 5656
    • 7g Jones LH, Kelly JW. RSC Med. Chem. 2020; 11: 10
    • 7h Zhang Z, Zhang S.-L, Wu C, Li H.-H, Zha L, Shi J, Liu X, Qin H.-L, Tang W. Eur. J. Med. Chem. 2023; 257: 115502
    • 7i Lucas SW, Qin ZR, Rakesh KP, Sharath Kumar KS, Qin H.-L. Bioorg. Chem. 2023; 130: 106227
    • 7j Liu M, Tang W, Qin H.-L. J. Org. Chem. 2023; 88: 1909
    • 7k Tang K, Li H.-H, Wu C, Zhang S.-L, Yang J.-G, Tang W, Qin H.-L. J. Enzym. Inhib. Med. Chem. 2023; 38: 2237213
    • 7l Wu C, Zhang G, Zhang Z.-W, Jiang X, Zhang Z, Li H, Qin H.-L, Tang W. J. Enzym. Inhib. Med. Chem. 2021; 36: 1860
    • 7m Zha G.-F, Wang S.-M, Rakesh KP, Bukhari SN. A, Manukumar HM, Vivek HK, Mallesha N, Qin H.-L. Eur. J. Med. Chem. 2019; 162: 364
    • 8a Nielsen MK, Ugaz CR, Li W, Doyle AG. J. Am. Chem. Soc. 2015; 137: 9571
    • 8b Yin J, Zarkowsky DS, Thomas DW, Zhao MM, Huffman MA. Org. Lett. 2004; 6: 1465
    • 9a Inkster JA. H, Liu K. Chem. Eur. J. 2012; 18: 11079
    • 9b Matesic L, Wyatt NA, Fraser BH, Roberts MP, Pham TQ, Greguric I. J. Org. Chem. 2013; 78: 11262
    • 10a Xiao X, Zhou F, Jiang J, Chen H, Wang L, Chen D, Xu Q, Lu J. Polym. Chem. 2018; 9: 1040
    • 10b Wang H, Zhou F, Ren G, Zheng Q, Chen H, Gao B, Klivansky L, Liu Y, Wu B, Xu Q, Lu J, Sharpless KB, Wu P. Angew. Chem. Int. Ed. 2017; 56: 11203
    • 10c Wu X, Zhang W, Sun G, Zou X, Sang X, He Y, Gao B. Nat. Commun. 2023; 14: 5168
    • 11a Bianchi TA, Cate LA. J. Org. Chem. 1977; 42: 2031
    • 11b Zheng Q, Dong J, Sharpless KB. J. Org. Chem. 2016; 81: 11360
    • 12a Jiang Y, Alharbi NS, Sun B, Qin H.-L. RSC Adv. 2019; 9: 13863
    • 12b Toulgoat F, Langlois BR, Médebielle M, Sanchez J.-Y. J. Org. Chem. 2007; 72: 9046
    • 12c Banks RE, Besheesh MK, Mohialdin-Khaffaf SN, Sharif I. J. Chem. Soc., Perkin Trans. 1 1996; 2069
    • 12d Zhang L, Cheng X, Zhou Q.-L. Chin. J. Chem. 2022; 40: 1687
    • 13a Kulka M. J. Am. Chem. Soc. 1950; 72: 1215
    • 13b Kim J.-G, Jang DO. Synlett 2010; 3049
    • 13c Thomson BJ, Khasnavis SR, Grigorian EC, Krishnan R, Yassa TD, Lee K, Sammis GM, Ball ND. Chem. Commun. 2023; 59: 555
    • 14a Tang L, Yang Y, Wen L, Yang X, Wang Z. Green Chem. 2016; 18: 1224
    • 14b Perez-Palau M, Cornella J. Eur. J. Org. Chem. 2020; 2497
    • 14c Park JK, Oh J, Lee S. Org. Chem. Front. 2022; 9: 3407
    • 15a Tribby AL, Rodríguez I, Shariffudin S, Ball ND. J. Org. Chem. 2017; 82: 2294
    • 15b Davies AT, Curto JM, Bagley SW, Willis MC. Chem. Sci. 2017; 8: 1233
    • 15c Ma Y, Pan Q, Ou C, Cai Y, Ma X, Liu C. Org. Biomol. Chem. 2023; 21: 7597
  • 16 Lee C, Ball ND, Sammis GM. Chem. Commun. 2019; 55: 14753
  • 17 Lou TS, Bagley SW, Willis MC. Angew. Chem. Int. Ed. 2019; 58: 18859
    • 18a Zhong T, Pang M.-K, Chen Z.-D, Zhang B, Weng J, Lu G. Org. Lett. 2020; 22: 3072
    • 18b Liu Y, Yu D, Guo Y, Xiao J.-C, Chen Q.-Y, Liu C. Org. Lett. 2020; 22: 2281
    • 18c Lin Q, Ma Z, Zheng C, Hu XJ, Guo Y, Chen QY, Liu C. Chin. J. Chem. 2020; 38: 1107
  • 19 Magre M, Cornella J. J. Am. Chem. Soc. 2021; 143: 21497
  • 20 Kong X, Liu Q, Chen Y, Wang W, Chen H, Wang W, Zhang S, Chen X, Cao Z. Green Chem. 2024; 26: 3435
  • 21 Pan Q, Liu Y, Pang W, Wu J, Ma X, Hu X, Guo Y, Chen Q.-Y, Liu C. Org. Biomol. Chem. 2021; 19: 8999
    • 22a Shavnya A, Coffey SB, Hesp KD, Ross SC, Tsai AS. Org. Lett. 2016; 18: 5848
    • 22b Shavnya A, Hesp KD, Tsai AS. Adv. Synth. Catal. 2018; 360: 1768
    • 22c Gutiérrez-González A, Karlsson S, Leonori D, Plesniak MP. Org. Lett. 2024; 26: 3972
    • 23a Kong X, Chen Y, Liu Q, Wang W, Zhang S, Zhang Q, Chen X, Xu Y.-Q, Cao Z.-Y. Org. Lett. 2023; 25: 581
    • 23b Carson WP. II, Sarver PJ, Goudy NS, MacMillan DW. C. J. Am. Chem. Soc. 2023; 145: 20767
    • 24a Ma Z, Liu Y, Ma X, Hu X, Guo Y, Chen Q.-Y, Liu C. Org. Chem. Front. 2022; 9: 1115
    • 24b Ou C, Cai Y, Ma Y, Zhang H, Ma X, Liu C. Org. Lett. 2023; 25: 6751
    • 24c Nguyen VT, Haug GC, Nguyen VD, Vuong NT. H, Karki GB, Arman HD, Larionov OV. Chem. Sci. 2022; 13: 4170
    • 24d Chen ZD, Zhou X, Yi JT, Diao HJ, Chen QL, Lu G, Weng J. Org. Lett. 2022; 24: 2474
    • 24e Yi JT, Zhou X, Chen QL, Chen ZD, Lu G, Weng J. Chem. Commun. 2022; 58: 9409
  • 25 Andrews JA, Pantaine LR. E, Palmer CF, Poole DL, Willis MC. Org. Lett. 2021; 23: 8488
  • 26 Vincent CA, Chiriac MI, Troian-Gautier L, Tambar UK. ACS Catal. 2023; 13: 3668
    • 27a Liu Y, Wu H, Guo Y, Xiao JC, Chen QY, Liu C. Angew. Chem. Int. Ed. 2017; 56: 15432
    • 27b Nie X, Xu T, Song J, Devaraj A, Zhang B, Chen Y, Liao S. Angew. Chem. Int. Ed. 2021; 60: 3956
    • 27c Frye NL, Daniliuc CG, Studer A. Angew. Chem. Int. Ed. 2022; 61: e202115593
    • 27d Zhang W, Li H, Li X, Zou Z, Huang M, Liu J, Wang X, Ni S, Pan Y, Wang Y. Nat. Commun. 2022; 13: 3515
    • 27e Zhang Y, Feng Q, Zheng Y, Lu Y, Liao S, Huang S. Org. Lett. 2024; 26: 1410
    • 27f Feng Q, He T, Qian S, Xu P, Liao S, Huang S. Nat. Commun. 2023; 14: 8278
    • 27g Nie X, Xu T, Hong Y, Zhang H, Mao C, Liao S. Angew. Chem. Int. Ed. 2021; 60: 22035
    • 27h Zhong T, Yi J.-T, Chen Z.-D, Zhuang Q.-C, Li Y.-Z, Lu G, Weng J. Chem. Sci. 2021; 12: 9359
    • 27i Wang P, Zhang H, Zhao M, Ji S, Lin L, Yang N, Nie X, Song J, Liao S. Angew. Chem. Int. Ed. 2022; 61: e202207684
    • 27j Xiong T, Chen Q.-L, Chen Z.-D, Yi J.-T, Wang S.-C, Lu G, Chan AS. C, Weng J. Chem Catal. 2023; 3: 100821
  • 28 Wright SW, Hallstrom KN. J. Org. Chem. 2006; 71: 1080
    • 29a Kirihara M, Naito S, Nishimura Y, Ishizuka Y, Iwai T, Takeuchi H, Ogata T, Hanai H, Kinoshita Y, Kishida M, Yamazaki K, Noguchi T, Yamashoji S. Tetrahedron 2014; 70: 2464
    • 29b Kirihara M, Naito S, Ishizuka Y, Hanai H, Noguchi T. Tetrahedron Lett. 2011; 52: 3086
    • 29c Xu T, Cao T, Yang M, Xu R, Nie X, Liao S. Org. Lett. 2020; 22: 3692
  • 30 Laudadio G.de A, Bartolomeu A, Verwijlen LM. H. M, Cao Y, de Oliveira KT, Noël T. J. Am. Chem. Soc. 2019; 141: 11832
  • 31 Bahrami K, Khodaei MM, Soheilizad M. J. Org. Chem. 2009; 74: 9287
  • 32 Meanwell NA. J. Med. Chem. 2011; 54: 2529
    • 33a Freeman F. Chem. Rev. 1984; 84: 117
    • 33b Oae S, Kim YH, Takara T, Fukushima D. Tetrahedron Lett. 1977; 18: 1195
    • 33c Chau MM, Kice JL. J. Am. Chem. Soc. 1976; 98: 7711
    • 33d Oae S, Takara T, Kim YH. Bull. Chem. Soc. Jpn. 1982; 55: 2484
    • 33e Oae S, Shinhama K, Fujimori K, Kim YH. Bull. Chem. Soc. Jpn. 1980; 53: 775
    • 34a Mukherjee H, Debreczeni J, Breed J, Tentarelli S, Aquila B, Dowling JE, Whitty A, Grimster NP. Org. Biomol. Chem. 2017; 15: 9685
    • 34b Song X, He Y, Wang B, Peng S, Pan X, Wei M, Liu Q, Qin H.-L, Tang H. Tetrahedron 2022; 108: 132657
    • 34c Cao Z, Zhou F, Gu P.-Y, Chen D, He J, Cappiello JR, Wu P, Xu Q, Lu J. Polym. Chem. 2020; 11: 3120
    • 34d Gao J, Pan X, Liu J, Lai J, Chang LM, Yuan G. RSC Adv. 2015; 5: 27439
    • 34e Wang X, Ahn Y.-M, Lentscher AG, Lister JS, Brothers RC, Kneen MM, Gerratana B, Boshoff HI, Dowd CS. Bioorg. Med. Chem. Lett. 2017; 27: 4426
    • 34f Flygare J, Medina J, Shan B, Clark D, Rosen T. (Tularik, Inc.) WO199805315A1, 1998
    • 34g Hinsberger S, Hüsecken K, Groh M, Negri M, Haupenthal J, Hartmann RW. J. Med. Chem. 2013; 56: 8332