Synthesis
DOI: 10.1055/s-0043-1775383
paper

Simple Access to 3-(Hetero)arylated Derivatives of 2-Furoic Acid via Ru(II)-Catalyzed C3-H Arylation of 2-Furoylimidazole

Konstantin E. Shepelenko
a   Platov South-Russian State Polytechnic University, 346428 Novocherkassk, Russian Federation
,
Irina G. Gnatiuk
a   Platov South-Russian State Polytechnic University, 346428 Novocherkassk, Russian Federation
,
Igor V. Lavrentev
a   Platov South-Russian State Polytechnic University, 346428 Novocherkassk, Russian Federation
,
Mikhail E. Minyaev
b   N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation
,
Victor M. Chernyshev
a   Platov South-Russian State Polytechnic University, 346428 Novocherkassk, Russian Federation
,
a   Platov South-Russian State Polytechnic University, 346428 Novocherkassk, Russian Federation
b   N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation
› Author Affiliations
This work was supported by the Russian Science Foundation (grant no. 23-73-10129, https://rscf.ru/project/23-73-10129/).


Abstract

A new approach for the preparation of a variety of 3-arylated 2-furoic acid derivatives has been developed. The approach involves selective Ru-catalyzed C3-H arylation of the furan moiety of readily available 2-furoyl-1-methylimidazole (using imidazole as a removable N-donor directing group), subsequent N-methylation, and nucleophilic substitution of the imidazole moiety with N, O, S, and C nucleophiles.

Supporting Information



Publication History

Received: 16 April 2024

Accepted after revision: 21 June 2024

Article published online:
16 July 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Lange J.-P, van der Heide E, van Buijtenen J, Price R. ChemSusChem 2012; 5: 150
    • 1b van Putten R.-J, van der Waal JC, de Jong E, Rasrendra CB, Heeres HJ, de Vries JG. Chem. Rev. 2013; 113: 1499
    • 1c Caes BR, Teixeira RE, Knapp KG, Raines RT. ACS Sustainable Chem. Eng. 2015; 3: 2591
    • 1d Mariscal R, Maireles-Torres P, Ojeda M, Sádaba I, López Granados M. Energy Environ. Sci. 2016; 9: 1144
    • 1e Bielski R, Grynkiewicz G. Green Chem. 2021; 23: 7458
    • 1f Zhang X, Xu S, Li Q, Zhou G, Xia H. RSC Adv. 2021; 11: 27042
    • 1g Jaswal A, Singh PP, Mondal T. Green Chem. 2022; 24: 510
    • 1h Deng W, Feng Y, Fu J, Guo H, Guo Y, Han B, Jiang Z, Kong L, Li C, Liu H, Nguyen PT. T, Ren P, Wang F, Wang S, Wang Y, Wang Y, Wong SS, Yan K, Yan N, Yang X, Zhang Y, Zhang Z, Zeng X, Zhou H. Green Energy Environ. 2023; 8: 10
    • 1i Dutta S. Biomass Convers. Biorefin. 2023; 13: 10361
    • 1j Reiser O, Dobler D, Leitner M, Kreitmeier P. Synthesis 2023; 55: 2304
    • 1k Biswas S, Kannaboina P, Sibi MP. Synthesis 2024; 56: 1807
    • 2a Papageorgiou GZ, Papageorgiou DG, Terzopoulou Z, Bikiaris DN. Eur. Polym. J. 2016; 83: 202
    • 2b Drault F, Snoussi Y, Paul S, Itabaiana IJr, Wojcieszak R. ChemSusChem 2020; 13: 5164
    • 2c Zhu J, Yin G. ACS Catal. 2021; 11: 10058
    • 3a Banerjee R, Kumar HK. S, Banerjee M. Int. J. Rev. Life. Sci. 2012; 2: 7
    • 3b Hana S, Hadeel A.-s, Marwa B. AlQalam J. Med. Appl. Sci. 2023; 44
    • 3c Elsaman T, Mohamed MS, Mohamed MA. Bioorg. Chem. 2019; 88: 102969
    • 3d Ye M, Feng H, Hu J, Yu Q, Liu S. Front. Plant Sci. 2022; 13 DOI: 10.3389/fpls.2022.1064797.
  • 4 Nguyen H, Wang Y, Moglia D, Fu J, Zheng W, Orazov M, Vlachos DG. Catal. Sci. Technol. 2021; 11: 2762
  • 5 Escobar A, Sathicq Á, Pizzio L, Blanco M, Romanelli G. Process Saf. Environ. Prot. 2015; 98: 176
    • 6a Iroegbu AO, Sadiku ER, Ray SS, Hamam Y. Chem. Afr. 2020; 3: 481
    • 6b Kwiecień H, Wodnicka A. Prog. Heterocycl. Chem. 2020; 31: 281
    • 7a Cioc RC, Smak TJ, Crockatt M, van der Waal JC, Bruijnincx PC. A. Green Chem. 2021; 23: 5503
    • 7b Cioc RC, Crockatt M, van der Waal JC, Bruijnincx PC. A. Angew. Chem. Int. Ed. 2022; 61: e202114720
    • 8a Roger J, Gottumukkala AL, Doucet H. ChemCatChem 2010; 2: 20
    • 8b Rossi R, Bellina F, Lessi M, Manzini C, Perego LA. Synthesis 2014; 46: 2833
    • 8c Bheeter CB, Chen L, Soulé J.-F, Doucet H. Catal. Sci. Technol. 2016; 6: 2005
    • 8d Rossi R, Lessi M, Manzini C, Marianetti G, Bellina F. Tetrahedron 2016; 72: 1795
    • 8e Choy PY, Wong SM, Kapdi A, Kwong FY. Org. Chem. Front. 2018; 5: 288
    • 8f Karlinskii BY, Ananikov VP. ChemSusChem 2021; 14: 558
    • 8g Mori A, Curpanen S, Pezzetta C, Perez-Luna A, Poli G, Oble J. Eur. J. Org. Chem. 2022; e202200727
    • 8h Prabagar B, Shi Z. In Transition-Metal-Catalyzed C-H Functionalization of Heterocycles, Vol. 1. Kumar A, Punniyamurthy T. Wiley; New York: 2023: 61
  • 9 Liu L.-Y, Qiao JX, Ewing WR, Yeung K.-S, Yu J.-Q. Isr. J. Chem. 2020; 60: 416
    • 10a Shen D.-M, Lin S, Parmee ER. Expert Opin. Ther. Pat. 2011; 21: 1211
    • 10b Hasegawa F, Niidome K, Migihashi C, Murata M, Negoro T, Matsumoto T, Kato K, Fujii A. Bioorg. Med. Chem. Lett. 2014; 24: 4266
    • 10c Fujii A, Negoro T, Migihashi C, Murata M, Nakamura K, Nukuda T, Matsumoto T, Imano K. Patent US 7514452B2, 2009
    • 10d Fujii A, Niidome K, Migihashi C, Kamei T, Matsumoto T, Hirata T. Patent US 8883824B2, 2014
  • 11 Jiménez-Somarribas A, Mao S, Yoon J.-J, Weisshaar M, Cox RM, Marengo JR, Mitchell DG, Morehouse ZP, Yan D, Solis I, Liotta DC, Natchus MG, Plemper RK. J. Med. Chem. 2017; 60: 2305
  • 12 Jin H, Jiang X, Yoo H, Wang T, Sung CG, Choi U, Lee C.-R, Yu H, Koo S. ChemistrySelect 2020; 5: 12421
  • 13 Salimbeni A, Canevotti R, Paleari F, Bonaccorsi F, Renzetti AR, Belvisi L, Bravi G, Scolastico C. J. Med. Chem. 1994; 37: 3928
    • 14a Si Larbi K, Fu HY, Laidaoui N, Beydoun K, Miloudi A, El Abed D, Djabbar S, Doucet H. ChemCatChem 2012; 4: 815
    • 14b Padmavathi R, Sankar R, Gopalakrishnan B, Parella R, Babu SA. Eur. J. Org. Chem. 2015; 3727
    • 14c Suwasia S, Venkataramani S, Babu SA. Org. Biomol. Chem. 2023; 21: 1793
    • 14d Oschmann M, Johansson Holm L, Pourghasemi-Lati M, Verho O. Molecules 2020; 25: 361
    • 14e Antoniou IM, Ioannou N, Panagiotou N, Georgiades SN. RSC Adv. 2024; 14: 12179
  • 15 Gao P, Guo W, Xue J, Zhao Y, Yuan Y, Xia Y, Shi Z. J. Am. Chem. Soc. 2015; 137: 12231
  • 16 Shi Y, Zhang L, Lan J, Zhang M, Zhou F, Wei W, You J. Angew. Chem. Int. Ed. 2018; 57: 9108
    • 17a Tan G, He S, Huang X, Liao X, Cheng Y, You J. Angew. Chem. Int. Ed. 2016; 55: 10414
    • 17b Hu L, Gui Q, Chen X, Tan Z, Zhu G. Org. Biomol. Chem. 2016; 14: 11070
  • 18 Nishino M, Hirano K, Satoh T, Miura M. Angew. Chem. Int. Ed. 2013; 52: 4457
    • 19a Zhao Y, Snieckus V. Adv. Synth. Catal. 2014; 356: 1527
    • 19b Nareddy P, Jordan F, Brenner-Moyer SE, Szostak M. ACS Catal. 2016; 6: 4755
    • 19c Nareddy P, Jordan F, Szostak M. Chem. Sci. 2017; 8: 3204
    • 19d Zhang L, Zhu L, Zhang Y, Yang Y, Wu Y, Ma W, Lan Y, You J. ACS Catal. 2018; 8: 8324
    • 19e Ravasco JM. J. M, Monteiro CM, Siopa F, Trindade AF, Oble J, Poli G, Simeonov SP, Afonso CA. M. ChemSusChem 2019; 12: 4629
    • 19f He Y.-Q, Li Z.-Q, Zhong Y.-W. Synthesis 2023; 55: 2779
    • 20a Mahato SK, Chatani N. ACS Catal. 2020; 10: 5173
    • 20b Wang C.-a, Chatani N. Org. Chem. Front. 2020; 7: 2955
    • 20c Wang C.-a, Chatani N. Chem. Lett. 2021; 50: 589
    • 20d Mahato SK, Ohara N, Khake SM, Chatani N. ACS Catal. 2021; 11: 7126
    • 20e Mahato SK, Zhang T, Chatani N. J. Org. Chem. 2022; 87: 16390
    • 20f Zhang R, Guan Y, Tian B, Liu Y, Chen Z, Hu J. Appl. Organomet. Chem. 2023; 37: e7060
    • 21a Miyashita A, Suzuki Y, Nagasaki I, Ishiguro C, Iwamoto K.-i, Higashino T. Chem. Pharm. Bull. 1997; 45: 1254
    • 21b Adam W, Lukacs Z, Viebach K, Humpf H.-U, Saha-Möller CR, Schreier P. J. Org. Chem. 2000; 65: 186
    • 21c Wang P.-Y, Wu C.-H, Ciou J.-F, Wu A.-C, Tsai S.-W. J. Mol. Catal. B: Enzym. 2010; 66: 113
    • 21d Nobuta T, Tsuchiya N, Suto Y, Yamagiwa N. Org. Biomol. Chem. 2024; 22: 703
  • 22 Shepelenko KE, Nikolaeva KA, Gnatiuk IG, Garanzha OG, Alexandrov AA, Minyaev ME, Chernyshev VM. Mendeleev Commun. 2022; 32: 485
  • 24 Gnatiuk IG, Nikolaeva KA, Shepelenko KE, Chernyshev VM. Russ. Chem. Bull. 2024; 73: 497
  • 25 Lavrentev IV, Shepelenko KE, Gnatiuk IG, Aleksandrov AA, Zhang Y, Chernyshev VM. Mendeleev Commun. 2023; 33: 494
  • 26 Juwaini NA. B, Ng JK. P, Seayad J. ACS Catal. 2012; 2: 1787
    • 27a Ohta S, Hayakawa S, Moriwaki H, Tsuboi S, Okamoto MJ. H. Heterocycles 1985; 23: 1759
    • 27b Jones RC. F, Nichols JR. Tetrahedron Lett. 1990; 31: 1771
    • 27c Karthik S, Muthuvel K, Gandhi T. J. Org. Chem. 2019; 84: 738
  • 28 Khristich BI, Bondarenko EV. Chem. Heterocycl. Compd. 1987; 23: 284
  • 29 Xue W.-J, Guo Y.-Q, Gao F.-F, Li H.-Z, Wu A.-X. Org. Lett. 2013; 15: 890
  • 30 Ojwach SO, Tshivhase MG, Guzei IA, Darkwa J, Mapolie SF. Can. J. Chem. 2005; 83: 843
  • 31 Li Y.-S, Tian H, Zhao D.-S, Hu D.-K, Liu X.-Y, Jin H.-W, Song G.-P, Cui Z.-N. Bioorg. Med. Chem. Lett. 2016; 26: 3632
  • 32 John JM, Loorthuraja R, Antoniuk E, Bergens SH. Catal. Sci. Technol. 2015; 5: 1181