Synthesis
DOI: 10.1055/s-0043-1775381
paper
Special Topic Dedicated to Prof. H.Ila

Zinc Carbenoid-Promoted Methylene Insertion in Saturated Heterocycles: Mechanistic Insights and Reactivity Profiles

Masato Tsuda
a   School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho Midori-ku, Yokohama 226–8501, Japan
,
a   School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho Midori-ku, Yokohama 226–8501, Japan
b   Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho Midori-ku, Yokohama 226–8501, Japan
› Author Affiliations
This work was supported by JSPS Fellowship (23KJ0899) from the Japan­ Society for the Promotion of Science.


Dedicated to Professor Hiriyakkanavar Ila on her 80th birthday

Abstract

The ring expansion of saturated heterocycles through methylene insertion into N–O bonds using a zinc carbenoid is described. This transformation is applied to 1,2-oxazetidines and 1,2-oxazolidines, while N-tosylated 1,2-oxazinane affords a ring-opened product. Density functional theory calculations suggest a stepwise reaction mechanism of the ring expansion and elucidate the origins of the different reactivities observed.

Supporting Information



Publication History

Received: 19 May 2024

Accepted after revision: 19 June 2024

Article published online:
16 July 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Joyson BW, Ball LT. Helv. Chim. Acta 2023; 106: e202200182
    • 1b Jurczyk J, Woo J, Kim SF, Dherange BD, Sarpong R, Levin MD. Nat. Synth. 2022; 1: 352
    • 2a Campos KR, Coleman PJ, Alvarez JC, Dreher SD, Garbaccio RM, Terrett NK, Tillyer RD, Truppo MD, Parmee ER. Science 2019; 363: eaat0805
    • 2b Blakemore DC, Castro L, Churcher I, Rees DC, Thomas AW, Wilson DM, Wood A. Nat. Chem. 2018; 10: 383
  • 3 Liu Z, Sivaguru P, Ning Y, Wu Y, Bi X. Chem. Eur. J. 2023; 29: e202301227
    • 4a Dherange BD, Kelly PQ, Liles JP, Sigman MS, Levin MD. J. Am. Chem. Soc. 2021; 143: 11337
    • 4b Reisenbauer JC, Green O, Franchino A, Finkelstein P, Morandi B. Science 2022; 377: 1104
    • 5a Manning JR, Davies HM. L. Tetrahedron 2008; 64: 6901
    • 5b Koronatov AN, Rostovskii NV, Khlebnikov AF, Novikov MS. J. Org. Chem. 2018; 83: 9210
    • 5c Hyland EE, Kelly PQ, McKillop AM, Dherange BD. I, Levin MD. J. Am. Chem. Soc. 2022; 144: 19258
    • 5d Li L, Ning Y, Chen H, Ning Y, Sivaguru P, Liao P, Zhu Q, Ji Y, de Ruiter G, Bi X. Angew. Chem. Int. Ed. 2023; e202313807
  • 6 Hughes JM. E, Gleason JL. Tetrahedron 2018; 74: 759
  • 7 Stevens TS, Creighton EM, Gordon AB, MacNicol M. J. Chem. Soc. 1928; 3193
  • 8 Yao C.-Z, Xiao Z.-F, Ning X.-S, Liu J, Zhang X.-W, Kang Y.-B. Org. Lett. 2014; 16: 5824
  • 9 Siitonen JH, Kattamuri PV, Yousufuddin M, Kürti L. Org. Lett. 2020; 22: 2486
  • 10 Malik M, Senatore R, Langer T, Holzer W, Pace V. Chem. Sci. 2023; 14: 10140
    • 11a Morita T, Fuse S, Nakamura H. Angew. Chem. Int. Ed. 2016; 55: 13580
    • 11b Morita T, Fukuhara S, Fuse S, Nakamura H. Org. Lett. 2018; 20: 433
    • 11c Tsuda M, Morita T, Nakamura H. Chem. Commun. 2022; 58: 1942
    • 11d Tsuda M, Morita T, Morita Y, Takaya J, Nakamura H. Adv. Sci. 2024; 11: 2307563
    • 12a Furukawa J, Kawabata N, Nishimura J. Tetrahedron Lett. 1966; 3353
    • 12b Furukawa J, Kawabata N, Nishimura J. Tetrahedron 1968; 24: 53
  • 13 Pirovano V, Vincente R. Homologation Reactions Based on Zinc Carbenoids and Related Reagents. In Homologation Reactions: Reagents, Applications, and Mechanisms. Wiley-VCH; Weinheim: 2023: 217-264
  • 14 Ryu I, Murai S, Otani S, Sonoda N. Tetrahedron Lett. 1977; 1995
    • 15a Javorskis T, Sriubaitė S, Bagdžiūnas G, Orentas E. Chem. Eur. J. 2015; 21: 9157
    • 15b Yang J, Wu B, Hu L. Asian J. Org. Chem. 2020; 9: 197
    • 15c Ganie MA, Bhat MS, Rizvi MA, Raheem S, Shah BA. Chem. Commun. 2022; 58: 8508
    • 16a Lakmal HH. C, Xu JX, Xu X, Ahmed B, Fong C, Szalda DJ, Ramig K, Sygula A, Webster CE, Zhang D, Cui X. J. Org. Chem. 2018; 83: 9497
    • 16b Higuchi D, Matsubara S, Kadowaki H, Tanaka D, Murakami K. Chem. Eur. J. 2023; 29: e202301071
    • 17a Williamson KS, Michaelis DJ, Yoon TP. Chem. Rev. 2014; 114: 8016
    • 17b Ravindra S, Jesin CP. I, Shabashini A, Nandi GC. Adv. Synth. Catal. 2021; 363: 1756
    • 18a Dewar MJ. S, Pierini AB. J. Am. Chem. Soc. 1984; 106: 203
    • 18b Beno BR, Houk KN, Singleton DS. J. Am. Chem. Soc. 1996; 118: 9984
  • 19 All 3D structures were described by the CYLview visualization program, see: Legault CY. CYLview 20 . Université de Sherbrooke; Québec: 2020. http://www.CYLview.org
    • 20a Magers DH, Davis SR. J. Mol. Struct.: THEOCHEM 1999; 487: 205
    • 20b Wheeler SE. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012; 2: 204
  • 21 Molla R, Joshi PN, Reddy NC, Biswas D, Rai V. Org. Lett. 2023; 25: 6385
  • 22 Partridge KM, Anzovino ME, Yoon TP. J. Am. Chem. Soc. 2008; 130: 2920
  • 23 Wang F, Stahl SS. Angew. Chem. Int. Ed. 2019; 58: 6385
  • 24 Bates RW, Lu Y, Cai MP. Tetrahedron 2009; 65: 7852