CC BY 4.0 · SynOpen 2024; 08(03): 138-152
DOI: 10.1055/s-0043-1775379
review

Microwave-Assisted Synthesis of Heterocyclic Scaffolds

Sanjeev Kumar
,
Anand Maurya
,
Alka Agarwal
S.K. is grateful to the Council of Scientific and Industrial Research (CSIR), New Delhi, for the Junior Research Fellowship, file no. 09/0013(15307)2022-EMR-I. A.M. is grateful to the Indian Council of Medical Research (ICMR), New Delhi, for a Senior Research Fellowship (wide letter no. 45/33/2022-BIO/BMS), and A.A. thanks the Banaras Hindu University and Institute of Eminence (IoE no. Dev Scheme no. 6031) for financial support.


Abstract

In recent years, there has been a notable surge in the utilization of microwave energy, leading to the emergence of innovative and groundbreaking methods across various branches of chemistry, including organic synthesis, materials science, heterocyclic chemistry, and medicinal chemistry. This comprehensive literature review delves into the microwave-assisted organic synthesis of specific heterocycles, illuminating its effectiveness in producing diverse molecules with heightened efficiency and selectivity. The review highlights the significant role of microwave irradiation as a potent method for constructing a wide range of compounds. Particular emphasis is placed on the impact of the technique on synthesizing various hybrids such as 1,2,3-triazole hybrids, coumarin hybrids, imidazopyridine hybrids, phenanthridines hybrids, carbene hybrids, and oxazole hybrids. This article is valuable as it offers insights into current synthetic procedures and trends in developing innovative medications utilizing heterocyclic compounds.

1 Introduction

2 Synthesis of 1,2,3-Triazole Hybrids

3 Coumarin Hybrids

4 Imidazo Pyridine Hybrids

5 Phenanthridine Hybrids

6 Carbene Hybrids

7 Oxazole Hybrids

8 Conclusion



Publication History

Received: 29 April 2024

Accepted after revision: 12 June 2024

Article published online:
03 July 2024

© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Chu S, Majumdar A. Nature 2012; 488: 294
  • 2 Adanez J, Abad A, Garcia-Labiano F, Gayan P, De Diego LF. Prog. Energy Combust. Sci. 2012; 38: 215
  • 3 Sturm GS, Verweij MD, Stankiewicz AI, Stefanidis GD. Chem. Eng. J. 2014; 243: 147
  • 4 Gedye R, Smith F, Westaway K, Ali H, Baldisera L, Laberge L, Rousell J. Tetrahedron Lett. 1986; 27: 279
  • 5 Giguere RJ, Bray TL, Duncan SM, Majetich G. Tetrahedron Lett. 1986; 27: 4945
  • 6 Varma R. Green Chem. 1999; 1: 43
  • 7 Nikačević NM, Huesman AE, Van den Hof PM, Stankiewicz AI. Chem. Eng. Process. 2012; 52: 1
  • 8 Martina K, Cravotto G, Varma RS. J. Org. Chem. 2021; 86: 13857
  • 9 Porta R, Benaglia M, Puglisi A. Org. Process Res. Dev. 2016; 20: 2
  • 10 Egami H, Hamashima Y. Chem. Rec. 2019; 19: 157
  • 11 Monguchi Y, Ichikawa T, Yamada T, Sawama Y, Sajiki H. Chem. Rec. 2019; 19: 3
  • 12 Tagliapietra S, CalcioGaudino E, Martina K, Barge A, Cravotto G. Chem. Rec. 2019; 19: 98
  • 13 De Risi C, Bortolini O, Brandolese A, Di Carmine G, Ragno D, Massi A. React. Chem. Eng. 2020; 5: 1017
  • 14 Horikoshi S, Serpone N. Chem. Rec. 2019; 19: 118
  • 15 Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. Angew. Chem. Int. Ed. 2002; 41: 2596
  • 16 Tornøe CW, Christensen C, Meldal M. J. Org. Chem. 2002; 67: 3057
  • 17 Banday AH, Shameem SA, Ganai BA. Org. Med. Chem. Lett. 2012; 2: 13
  • 18 Narsimha S, Kumar NS, Swamy BK, Reddy NV, Hussain SA, Rao MS. Bioorg. Med. Chem. Lett. 2016; 26: 1639
  • 19 Abbaspour S, Keivanloo A, Bakherad M, Sepehri S. Chem. Biodivers. 2019; 16: 1800410
  • 20 Cheng CY, Haque A, Hsieh MF, Imran Hassan S, Faizi MS. H, Dege N, Khan MS. Int. J. Mol. Sci. 2020; 21: 3823
  • 21 Galstyan AS, Martiryan AI, Grigoryan KR, Ghazaryan AG, Samvelyan MA, Ghochikyan TV, Nenajdenko VG. Molecules 2018; 23: 2991
  • 22 D’hooghe M, Vandekerckhove S, Mollet K, Vervisch K, Dekeukeleire S, Lehoucq L, Lategan C, Smith PJ, Chibale K, De Kimpe N. Beilstein J. Org. Chem. 2011; 7: 1745
  • 23 Majeed R, Sangwan PL, Chinthakindi PK, Khan I, Dangroo NA, Thota N, Hamid A, Sharma PR, Saxena AK, Koul S. Eur. J. Med. Chem. 2013; 63: 782
  • 24 Kadaba PK. J. Med. Chem. 1988; 31: 196
  • 25 Mokariya JA, Kalola AG, Prasad P, Patel MP. Mol. Diversity 2022; 26: 963
  • 26 Pradeep M, Vishnuvardhan M, Gangadhar T. Chem. Data Collect. 2023; 46: 101020
  • 27 Subhashini NJ, Kumar EP, Gurrapu N, Yerragunta V. J. Mol. Struct. 2019; 1180: 618
  • 28 Vishnuvardhan M, Pradeep M, Gangadhar T. Chem. Data Collect. 2021; 31: 100612
  • 29 Jaafar Z, Chniti S, Sassi AB, Dziri H, Marque S, Lecouvey M, Gharbi R, Msaddek M. J. Mol. Struct. 2019; 1195: 689
  • 30 Cherif M, Horchani M, Al-Ghamdi YO, Almalki SG, Alqurashi YE, Jannet HB, Romdhane A. J. Mol. Struct. 2020; 1220: 128685
  • 31 Dharavath R, Nagaraju N, Reddy MR, Ashok D, Sarasija M, Vijjulatha M, Vani T, Jyothi K, Prashanthi G. RSC Adv. 2020; 10: 11615
  • 32 Aarjane M, Slassi S, Tazi B, Amine A. J. Chem. 2021; 1
  • 33 Alves TM, Jardim GA, Ferreira MA. RSC Adv. 2021; 11: 10336
  • 34 Sucharitha ER, Krishna TM, Manchal R, Ramesh G, Narsimha S. Bioorg. Med. Chem. Lett. 2021; 47: 128201
  • 35 Ashok D, Ram Reddy M, Nagaraju N, Dharavath R, Ramakrishna K, Gundu S, Shravani P, Sarasija M. Med. Chem. Res. 2020; 29: 699
  • 36 Ashok D, Reddy MR, Dharavath R, Ramakrishna K, Nagaraju N, Sarasija M. J. Chem. Sci. 2020; 132: 1
  • 37 Znati M, Horchani M, Latapie L, Jannet HB, Bouajila J. J. Mol. Struct. 2021; 1246: 131216
  • 38 Vishnuvardhan M, Pradeep M, Gangadhar T. Russ. J. Org. Chem. 2022; 58: 592
  • 39 Saikia AA, Rao RN, Das S, Jena S, Rej S, Maiti B, Chanda K. Tetrahedron Lett. 2020; 61: 152273
  • 40 Vani I, Sireesha R, Mak KK, Rao PM, Prasad KR, Rao MB. Chem. Data Collect. 2021; 31: 100605
  • 41 Molnar M, Lončarić M, Kovač M. Curr. Org. Chem. 2020; 24: 4
  • 42 Riveiro ME, Moglioni A, Vazquez R, Gomez N, Facorro G, Piehl L, de Celis ER, Shayo C, Davio C. Bioorg. Med. Chem. Lett. 2008; 16: 2665
  • 43 Shikishima Y, Takaishi Y, Honda G, Ito M, Takeda Y, Kodzhimatov OK, Ashurmetov O, Lee KH. Chem. Pharm. Bull. 2001; 49: 877
  • 44 Ostrov DA, Hernández Prada JA, Corsino PE, Finton KA, Le N, Rowe TC. Antimicrob. Agents Chemother. 2007; 51: 3688
  • 45 Manvar A, Bavishi A, Radadiya A, Patel J, Vora V, Dodia N, Rawal K, Shah A. Bioorg. Med. Chem. Lett. 2011; 21: 4728
  • 46 Yeh JY, Coumar MS, Horng JT, Shiao HY, Kuo FM, Lee HL, Chen IC, Chang CW, Tang WF, Tseng SN, Chen CJ. J. Med. Chem. 2010; 53: 1519
  • 47 Piazzi L, Cavalli A, Colizzi F, Belluti F, Bartolini M, Mancini F, Recanatini M, Andrisano V, Rampa A. Bioorg. Med. Chem. Lett. 2008; 18: 423
  • 48 Curini M, Epifano F, Maltese F, Marcotullio MC, Tubaro A, Altinier G, Gonzales SP, Rodriguez JC. Bioorg. Med. Chem. Lett. 2004; 14: 2241
  • 49 Ashok D, Ramakrishna K, Nagaraju N, Reddy MR, Dharavath R, Sarasija M. Russ. J. Gen. Chem. 2021; 91: 711
  • 50 Chavan RR, Hosamani KM. R. Soc. Open Sci. 2018; 5: 172435
  • 51 Mangasuli SN. Chem. Data Collect. 2020; 29: 100503
  • 52 Mangasuli SN, Hosamani KM, Managutti PB. Heliyon 2019; 5: 1131
  • 53 Gu CX, Chen WW, Xu B, Xu MH. Tetrahedron 2019; 75: 1605
  • 54 Vagish CB, Kumara K, Vivek HK, Bharath S, Lokanath NK, Kumar KA. J. Mol. Struct. 2021; 1230: 129899
  • 55 Bhaskaran ST, Mathew P. J. Mol. Struct. 2022; 1251: 132071
  • 56 Dharavath R, Sarasija M, Ram Reddy M, Nalaparaju N, Katta R, Ashok D. J. Heterocycl. Chem. 2020; 57: 3943
  • 57 Dao PD, Ho SL, Lim HJ, Cho CS. J. Org. Chem. 2018; 83: 4140
  • 58 Rao RN, Mm B, Maiti B, Thakuria R, Chanda K. ACS Comb. Sci. 2018; 20: 164
  • 59 Qian Y, Zhang Y, Zhong P, Peng K, Xu Z, Chen X, Lu K, Chen G, Li X, Liang G. J. Cell. Mol. Med. 2016; 20: 1427
  • 60 Yang X, Shang Q, Bo C, Hu L, Zhoua Y. Org. Chem. 2018; 5: 184
  • 61 Dan WJ, Wang DC, Li D, Zhang AL, Gao JM. Bioorg. Med. Chem. Lett. 2018; 28: 2861
  • 62 Zhuang ZP, Kung MP, Wilson A, Lee CW, Plössl K, Hou C, Holtzman DM, Kung HF. J. Med. Chem. 2003; 46: 237
  • 63 Xiao S, Liu Z, Zhao J, Pei M, Zhang G, He W. RSC Adv. 2016; 6: 27119
  • 64 Rodríguez JC, Maldonado RA, Ramírez García G, Diaz Cervantes E, de la Cruz FN. J. Heterocycl. Chem. 2020; 57: 2279
  • 65 Herr JM, Rössiger C, Albrecht G, Yanagi H, Göttlich R. Synth. Commun. 2019; 49: 2931
  • 66 Ramírez-López SC, Gámez-Montaño R. Proceedings 2019; 41: 79
  • 67 Cavinato LM, Volpi G, Fresta E, Garino C, Fin A, Barolo C. Chem 2021; 3: 714
  • 68 Mishra M, Mishra NP, Raiguru BP, Das T, Mohapatra S, Nayak S, Mishra DR, Panda J, Sahoo DK. ChemistrySelect 2021; 6: 3570
  • 69 Kusy D, Maniukiewicz W, Błażewska KM. Tetrahedron Lett. 2019; 60: 151244
  • 70 Hu QF, Gao TT, Shi YJ, Lei Q, Liu ZH, Feng Q, Chen ZJ, Yu LT. Eur. J. Med. Chem. 2019; 162: 407
  • 71 Dayal N, Opoku-Temeng C, Mohammad H, Abutaleb NS, Hernandez D, Onyedibe KI, Wang M, Zeller M, Seleem MN, Sintim HO. ACS Infect. Dis. 2019; 5: 1820
  • 72 Yang BJ, Fan SR, Zhang XF, Cai JY, Ruan T, Xiang ZR, Ren J, Hao XJ, Chen DZ. Bioorg. Chem. 2022; 119: 105582
  • 73 Dubost E, Dumas N, Fossey C, Magnelli R, Butt-Gueulle S, Ballandonne C, Caignard DH, Dulin F, de Oliveira Santos JS, Millet P, Charnay Y. J. Med. Chem. 2012; 55: 9693
  • 74 Villamizar-Mogotocoro AF, Kouznetsov VV. Tetrahedron Lett. 2023; 121: 154461
  • 75 Lepsøe MR, Dalevold AG, Gundersen LL. ChemistryOpen 2023; 12: e202300095
  • 76 Ortiz Villamizar MC. O, Puerto Galvis CE, Pedraza Rodríguez SA, Zubkov FI, Kouznetsov VV. Molecules 2022; 27: 8112
  • 77 Nishiyama T, Takaiwa S, Kotouge R, Tani S, Yoshinaga R, Hamada E, Endo M, Sugino Y, Hatae N, Hibino S, Choshi T. Tetrahedron Lett. 2019; 60: 151278
  • 78 Dende SK, Korupolu RB, Doddipalla R, Leleti KR. Results Chem. 2021; 3: 100149
  • 79 Smith CA, Narouz MR, Lummis PA, Singh I, Nazemi A, Li CH, Crudden CM. Chem. Rev. 2019; 119: 4986
  • 80 Papadaki E, Magrioti V. Tetrahedron Lett. 2020; 61: 151419
  • 81 Varenikov A, de Ruiter G. Organometallics 2020; 39: 247
  • 82 Wales SM, Hammer KA, Somphol K, Kemker I, Schröder DC, Tague AJ, Brkic Z, King AM, Lyras D, Riley TV, Bremner JB. Org. Biomol. Chem. 2015; 13: 10813
  • 83 Moraski GC, Markley LD, Chang M, Cho S, Franzblau SG, Hwang CH, Boshoff H, Miller MJ. Bioorg. Med. Chem. 2012; 20: 2214
  • 84 Kumar A, Ahmad P, Maurya RA, Singh AB, Srivastava AK. Eur. J. Med. Chem. 2009; 44: 109
  • 85 Yan Z, Liu A, Huang M, Liu M, Pei H, Huang L, Yi H, Liu W, Hu A. Eur. J. Med. Chem. 2018; 149: 170
  • 86 Gong ZH, Leu CM, Wu FI, Shu CF. Macromolecules 2000; 33: 8527
  • 87 Grotkopp O, Ahmad A, Frank W, Müller TJ. Org. Biomol. Chem. 2011; 9: 8130
  • 88 Szabó T, Dancsó A, Ábrányi-Balogh P, Volk B, Milen M. Tetrahedron Lett. 2019; 60: 1353
  • 89 Angajala G, Subashini R, Aruna V. J. Mol. Struct. 2020; 1200: 127092
  • 90 Pham PT, Nguyen HT, Nguyen TT, Nguyen LH, Dang MH, Doan TL, Pham DD, Nguyen CT, Tran PH. Catalysts 2022; 12: 1394