RSS-Feed abonnieren
DOI: 10.1055/s-0043-1775366
Aliphatic Olefin Epoxidation with Hydrogen Peroxide Catalyzed by an Integrated Mn/TS-1/N System
This research was supported by the PetroChina Innovation Foundation, and the Science and Technology Program of Gansu Province (Grant No. 23ZDFA016, 21ZD4WA021, 22ZD6GA003, and 21JR7RA096).

Abstract
Propylene liquid-phase epoxidation with 50–75% H2O2 is an important process for the industrial production of propylene oxide (PO). To realize a propylene epoxidation process that proceeds with low hydrogen peroxide concentration, we developed an integrated Mn/TS-1/N catalytic system via in-situ reaction of Mn/TS-1 with an N-donor ligand, affording the PO product in excellent yield with only 30 wt% H2O2. Other long-chain aliphatic epoxides were also readily synthesized by this catalytic epoxidation system. Moreover, in addition to the standard micro-pressure reactor, a continuous-flow microreactor was developed that executed the hydrogen peroxide propylene oxide (HPPO) process with excellent efficiency for 1300 hours. This innovative Mn/TS-1/N catalyzed epoxidation represents a promising direction for advancing HPPO industrial processes, offering improved efficiency while minimizing the reliance on high concentrations of H2O2.
Key words
olefins - hydrogen peroxide - integrated Mn/TS-1/N catalysts - epoxidation - continuous-flow microreactionsSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0043-1775366.
- Supporting Information
Publikationsverlauf
Eingereicht: 02. April 2024
Angenommen nach Revision: 13. Mai 2024
Artikel online veröffentlicht:
28. Mai 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Ke J, Zhao J, Chi M, Wang M, Kong X, Chang Q, Zhou W, Long C, Zeng J, Geng Z. Nat. Commun. 2022; 13: 932
- 1b Alvear M, Eränen K, Murzin DY, Salmi T. Ind. Eng. Chem. Res. 2021; 60: 2430
- 1c Russo V, Tesser R, Santacesaria E, Di Serio M. Ind. Eng. Chem. Res. 2013; 52: 1168
- 1d Shin SB, Chadwick D. Ind. Eng. Chem. Res. 2010; 49: 8125
- 1e Kamata K, Yonehara K, Sumida Y, Yamaguchi K, Hikichiand S, Mizuno N. Science 2003; 300: 964
- 2a Lin M, Xia C, Zhu B, Li H, Shu X. Chem. Eng. J. 2016; 295: 370
- 2b Nijhuis TA, Makkee M, Moulijn JA, Weckhuysen BM. Ind. Eng. Chem. Res. 2006; 45: 3447
- 3 Nijhuis TA, Makkee M, Moulijn JA, Weckhuysen BM. Ind. Eng. Chem. Res. 2006; 45: 3447
- 4a Karmadonova IE, Zudin VN, Kuznetsova NI, Kuzhetsova LI, Bal’zhinimaev BS. Catal. Ind. 2020; 12: 216
- 4b Buijink JK. F, Van Vlaanderen JJ. M, Crocker M, Niele FG. M. Catal. Today 2004; 93–95: 199
- 5a Gordon CP, Engler H, Trag SA, Plodinec M, Lunkenbein T, Berkessel A, Teles JH, Parvulescu A.-N, Copéret C. Nature 2020; 586: 708
- 5b Signorile M, Braglia L, Crocellà V, Torelli P, Groppo E, Ricchiardi G, Bordiga S, Bonino F. Angew. Chem. Int. Ed. 2020; 59: 18145
- 5c Xi Z, Zhou N, Sun Y, Li K. Science 2001; 292: 1139
- 6a Jie Z, Yang T, Wang X, Ji Y, Li Y, Meng B, Tan X, Liu S. Surf. Interfaces 2022; 29: 101741
- 6b Wang G, Li Y, Lin L, Guo Y, Zhang C, Li G, Feng Z, Guo H. Ind. Eng. Chem. Res. 2021; 60: 12109
- 6c Yu Y, Tang Z, Wang J, Wang R, Chen Z, Liu H, Shen K, Huang X, Liu Y, He M. J. Catal. 2020; 381: 96
- 6d Wang B, Han H, Ge B, Ma J, Zhu J, Chen S. New J. Chem. 2019; 43: 10390
- 6e Zhu Q, Liang M, Yan W, Ma W. Microporous Mesoporous Mater. 2019; 278: 307
- 6f Wang Y, Li H, Liu W, Lin Y, Han X, Wang Z. Trans. Tianjin Univ. 2018; 24: 25
- 6g Fang X, Wu L, Yu Y, Sun L, Liu Y. Catal. Commun. 2018; 114: 1
- 6h Nie X, Jia X, Chen Y, Guo X, Song C. Mol. Catal. 2017; 441: 150
- 6i Zuo Y, Wang M, Song W, Wang X, Guo X. Ind. Eng. Chem. Res. 2012; 51: 10586
- 7a Liu D, Wang R, Yu Y, Chen Z, Fang N, Liu Y, He M. Catal. Sci. Technol. 2023; 13: 1437
- 7b Yin J, Jin X, Xu H, Guan Y, Peng R, Chen L, Jiang J, Wu P. Chin. J. Catal. 2021; 42: 1561
- 7c Tang K, Hou W, Wang X, Xu W, Lu X, Ma R, Fu Y, Zhu W. Microporous Mesoporous Mater. 2021; 328: 111492
- 7d Lu X, Wu H, Jiang J, He M, Wu P. J. Catal. 2016; 342: 173
- 8a Miao C, Wang B, Wang Y, Xia C, Lee Y.-M, Nam W, Sun W. J. Am. Chem. Soc. 2016; 138: 936
- 8b Bryliakov KP, Talsi EP. Coord. Chem. Rev. 2014; 276: 73
- 8c Lyakin OY, Ottenbacher RV, Bryliakov KP, Talsi EP. Top. Catal. 2013; 56: 939
- 8d Talsi EP, Bryliakov KP. Coord. Chem. Rev. 2012; 256: 1418
- 8e Xia Q.-H, Ge H.-Q, Ye C.-P, Liu Z.-M, Su K.-X. Chem. Rev. 2005; 105: 1603
- 9 Wu Y, Wang T, Wang H, Wang X, Dai X, Shi F. Nat. Commun. 2019; 10: 2599
- 10 Propylene Epoxidation in a Micro-pressure Reactor; General Procedure: Under air atmosphere, catalyst (80 mg), 30 wt% H2O2 (6.4 mmol, 1 equiv), and CH3OH (6.4 mL) were added to a micro-pressure reactor, and then propylene 1a (0.4 Mpa) was filled into the reactor. The mixture was stirred at 40 °C (water bath) for 1.5 hours. After cooling to room temperature, the reaction mixture was analyzed by GC using anisole as the internal standard, and H2O2 conversion was measured by the KMnO4 titration method (see the Supporting Information).
- 11a Chen S, Yang S, Wang H, Niu Y, Zhang Z, Qian B. Synthesis 2022; 54: 3999
- 11b Ötvös SB, Kappe OC. Green Chem. 2021; 23: 6117
- 11c Fu WC, MacQueen PM, Jamison TF. Chem. Soc. Rev. 2021; 50: 7378
- 11d Gascon J, van Ommen JR, Moulijn JA, Kapteijn F. Catal. Sci. Technol. 2015; 5: 807
- 11e Kiwi-Minsker L, Renken A. Catal. Today 2005; 110: 2
- 11f Jähnisch K, Hessel V, Löwe H, Baerns M. Angew. Chem. Int. Ed. 2004; 43: 406
- 12 Propylene Epoxidation in a Continuous-Flow Microreactor; General Procedure: Mn/TS-1 catalyst (955 mg) was prepared as 40–60 mesh particles, which were filled in a packed-bed microreactor. A liquid-phase plunger pump was then connected to the column and set at 1.0 mL/min flow rate. The reaction mixture of 25 wt% NH3·H2O, 30 wt% H2O2, and CH3OH was prepared (V CH3OH/V H2O2 = 20:1, V CH3OH/V NH3·H2O = 1×105/L), which was connected with the plunger pump. The stainless-steel micro-column was put into a 40 °C water bath, and the pump was started with the filling of propylene 1a (44.3 mL/min). Samples from the reaction mixture containing PO were taken at regular intervals and analyzed by GC using anisole as the internal standard. H2O2 conversion was measured by the KMnO4 titration method.
- 13 Li Z, Chen X, Ma W, Zhong Q. ACS Sustainable Chem. Eng. 2020; 8: 8496
- 14 Li H, Zhai Y, Zhang X, Lv G, Shen Y, Wang X, Jiang T, Wu Y. Ind. Eng. Chem. Res. 2020; 59: 10289