CC BY 4.0 · Chinese medicine and natural products 2023; 03(03): e108-e116
DOI: 10.1055/s-0043-1774414
Review Article

Research Progress of Intestinal Flora and Related Diseases

Yaping Sun
1   Periodical Press, Henan University of Chinese Medicine, Zhengzhou, Henan, China
,
Xindi Zhang
2   College of Pediatric Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, China
,
Yanli Zhang
3   College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, China
,
Yanpo Si
3   College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, China
,
Bing Cao
3   College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, China
,
Zengfu Shan
3   College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, China
› Author Affiliations
Funding This work was supported by the Henan University of Chinese Medicine Doctoral Research Initiation Fund Project (RSBSJJ2020-17) and National Key R&D Program - Modernization of Chinese Medicine (2019YFC1708802).

Abstract

The intestinal tract is an important digestive organ and detoxification organ of the human body, and its circling structure is vividly called the “second brain” of the human body. There are hundreds of millions of bacterium in the intestinal tract. These bacteria live in mutual benefit with the body, provide energy and nutrients for the host and themselves through fermented food, participate in the metabolism of the body, and form a metabolic mode of cometabolism between the host and the symbiotic flora. In addition, intestinal flora can also help the body resist the invasion of pathogens, promote human health, and resist diseases. More and more studies have shown that when the body is subjected to exogenous or endogenous stimuli, the microbial flora in the intestinal will change, and the disturbance of intestinal flora is closely related to the occurrence and development of inflammatory bowel diseases, metabolic diseases, immune system diseases, mental system diseases, and tumors. This article reviews the research progress of the intestinal flora affecting the pathogenesis of various diseases, aiming to provide new references and ideas for the clinical treatment of diseases.

CRediT Authorship Contribution Statement

Y.S. was responsible for conceptualization, funding acquisition, and writing-review & editing. X.Z. was responsible for investigation, and writing—original draft. Y.Z. was responsible for supervision. Y.S., B.C. and Z.S. were responsible for investigation.




Publication History

Received: 06 April 2023

Accepted: 24 May 2023

Article published online:
27 September 2023

© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Sekirov I, Russell SL, Antunes LC, Finlay BB. Gut microbiota in health and disease. Physiol Rev 2010; 90 (03) 859-904
  • 2 Qin J, Li R, Raes J. et al; MetaHIT Consortium. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010; 464 (7285) 59-65
  • 3 Campbell EL, Colgan SP. Control and dysregulation of redox signalling in the gastrointestinal tract. Nat Rev Gastroenterol Hepatol 2019; 16 (02) 106-120
  • 4 Kim GH, Lee K, Shim JO. Gut bacterial dysbiosis in irritable bowel syndrome: a case-control study and a cross-cohort analysis using publicly available data sets. Microbiol Spectr 2023; 11 (01) e0212522
  • 5 Rosenbaum JT, Asquith M. The microbiome and HLA-B27-associated acute anterior uveitis. Nat Rev Rheumatol 2018; 14 (12) 704-713
  • 6 Luo Y, Tong Y, Wu L. et al. Alteration of gut microbiota in high-risk individuals for rheumatoid arthritis is associated with disturbed metabolome and initiates arthritis by triggering mucosal immunity imbalance. Arthritis Rheumatol 2023; (e-pub ahead of print) DOI: 10.1002/art.42616.
  • 7 Funsten MC, Yurkovetskiy LA, Kuznetsov A. et al. Microbiota-dependent proteolysis of gluten subverts diet-mediated protection against type 1 diabetes. Cell Host Microbe 2023; 31 (02) 213-227.e9
  • 8 O'Donnell JA, Zheng T, Meric G, Marques FZ. The gut microbiome and hypertension. Nat Rev Nephrol 2023; 19 (03) 153-167
  • 9 Fattorusso A, Di Genova L, Dell'Isola GB, Mencaroni E, Esposito S. Autism spectrum disorders and the gut microbiota. Nutrients 2019; 11 (03) 521
  • 10 Wong CC, Yu J. Gut microbiota in colorectal cancer development and therapy. Nat Rev Clin Oncol 2023; 20 (07) 429-452
  • 11 Liu D, Saikam V, Skrada KA, Merlin D, Iyer SS. Inflammatory bowel disease biomarkers. Med Res Rev 2022; 42 (05) 1856-1887
  • 12 Torres J, Mehandru S, Colombel JF, Peyrin-Biroulet L. Crohn's disease. Lancet 2017; 389 (10080): 1741-1755
  • 13 Ungaro R, Mehandru S, Allen PB, Peyrin-Biroulet L, Colombel JF. Ulcerative colitis. Lancet 2017; 389 (10080): 1756-1770
  • 14 Bisgaard TH, Allin KH, Keefer L, Ananthakrishnan AN, Jess T. Depression and anxiety in inflammatory bowel disease: epidemiology, mechanisms and treatment. Nat Rev Gastroenterol Hepatol 2022; 19 (11) 717-726
  • 15 Bisgaard TH, Poulsen G, Allin KH, Keefer L, Ananthakrishnan AN, Jess T. Longitudinal trajectories of anxiety, depression, and bipolar disorder in inflammatory bowel disease: a population-based cohort study. EClinicalMedicine 2023; 59: 101986
  • 16 Varela E, Manichanh C, Gallart M. et al. Colonisation by Faecalibacterium prausnitzii and maintenance of clinical remission in patients with ulcerative colitis. Aliment Pharmacol Ther 2013; 38 (02) 151-161
  • 17 Knights D, Silverberg MS, Weersma RK. et al. Complex host genetics influence the microbiome in inflammatory bowel disease. Genome Med 2014; 6 (12) 107
  • 18 Morgan XC, Tickle TL, Sokol H. et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol 2012; 13 (09) R79
  • 19 Barberio B, Facchin S, Patuzzi I. et al. A specific microbiota signature is associated to various degrees of ulcerative colitis as assessed by a machine learning approach. Gut Microbes 2022; 14 (01) 2028366
  • 20 Martinez-Medina M, Garcia-Gil LJ. Escherichia coli in chronic inflammatory bowel diseases: an update on adherent invasive Escherichia coli pathogenicity. World J Gastrointest Pathophysiol 2014; 5 (03) 213-227
  • 21 Lopez-Siles M, Martinez-Medina M, Busquets D. et al. Mucosa-associated Faecalibacterium prausnitzii and Escherichia coli co-abundance can distinguish irritable bowel syndrome and inflammatory bowel disease phenotypes. Int J Med Microbiol 2014; 304 (3-4): 464-475
  • 22 Imhann F, Vich Vila A, Bonder MJ. et al. Interplay of host genetics and gut microbiota underlying the onset and clinical presentation of inflammatory bowel disease. Gut 2018; 67 (01) 108-119
  • 23 Lewis K, Lutgendorff F, Phan V, Söderholm JD, Sherman PM, McKay DM. Enhanced translocation of bacteria across metabolically stressed epithelia is reduced by butyrate. Inflamm Bowel Dis 2010; 16 (07) 1138-1148
  • 24 Bao C, Wu L, Wang D. et al. Acupuncture improves the symptoms, intestinal microbiota, and inflammation of patients with mild to moderate Crohn's disease: a randomized controlled trial. EClinicalMedicine 2022; 45: 101300
  • 25 Li Q, Cui Y, Xu B. et al. Main active components of Jiawei Gegen Qinlian decoction protects against ulcerative colitis under different dietary environments in a gut microbiota-dependent manner. Pharmacol Res 2021; 170: 105694
  • 26 Wang Y, Zhang J, Zhang B. et al. Modified Gegen Qinlian decoction ameliorated ulcerative colitis by attenuating inflammation and oxidative stress and enhancing intestinal barrier function in vivo and in vitro. J Ethnopharmacol 2023; 313: 116538
  • 27 Wang X, Huang S, Zhang M. et al. Gegen Qinlian decoction activates AhR/IL-22 to repair intestinal barrier by modulating gut microbiota-related tryptophan metabolism in ulcerative colitis mice. J Ethnopharmacol 2023; 302 (Pt B): 115919
  • 28 Swinburn BA, Kraak VI, Allender S. et al. The global syndemic of obesity, undernutrition, and climate change: the lancet commission report. Lancet 2019; 393 (10173): 791-846
  • 29 Lu Y, Loos RJ. Obesity genomics: assessing the transferability of susceptibility loci across diverse populations. Genome Med 2013; 5 (06) 55
  • 30 Waterland RA. Epigenetic mechanisms affecting regulation of energy balance: many questions, few answers. Annu Rev Nutr 2014; 34: 337-355
  • 31 Ley RE. Obesity and the human microbiome. Curr Opin Gastroenterol 2010; 26 (01) 5-11
  • 32 Guh DP, Zhang W, Bansback N, Amarsi Z, Birmingham CL, Anis AH. The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis. BMC Public Health 2009; 9: 88
  • 33 Renehan AG, Tyson M, Egger M, Heller RF, Zwahlen M. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet 2008; 371 (9612) 569-578
  • 34 Bogers RP, Bemelmans WJ, Hoogenveen RT. et al; BMI-CHD Collaboration Investigators. Association of overweight with increased risk of coronary heart disease partly independent of blood pressure and cholesterol levels: a meta-analysis of 21 cohort studies including more than 300 000 persons. Arch Intern Med 2007; 167 (16) 1720-1728
  • 35 Wang P, Li D, Ke W, Liang D, Hu X, Chen F. Resveratrol-induced gut microbiota reduces obesity in high-fat diet-fed mice. Int J Obes 2020; 44 (01) 213-225
  • 36 Xie W, Gu D, Li J, Cui K, Zhang Y. Effects and action mechanisms of berberine and Rhizoma coptidis on gut microbes and obesity in high-fat diet-fed C57BL/6J mice. PLoS One 2011; 6 (09) e24520
  • 37 Wang K, Liao M, Zhou N. et al. Parabacteroides distasonis alleviates obesity and metabolic dysfunctions via production of succinate and secondary bile acids. Cell Rep 2019; 26 (01) 222-235.e5
  • 38 Pedret A, Valls RM, Calderón-Pérez L. et al. Effects of daily consumption of the probiotic Bifidobacterium animalis subsp. lactis CECT 8145 on anthropometric adiposity biomarkers in abdominally obese subjects: a randomized controlled trial. Int J Obes 2019; 43 (09) 1863-1868
  • 39 Yuan X, Wang R, Han B. et al. Functional and metabolic alterations of gut microbiota in children with new-onset type 1 diabetes. Nat Commun 2022; 13 (01) 6356
  • 40 Xiao L, Van't Land B, Engen PA. et al. Human milk oligosaccharides protect against the development of autoimmune diabetes in NOD-mice. Sci Rep 2018; 8 (01) 3829
  • 41 Ho J, Reimer RA, Doulla M, Huang C. Effect of prebiotic intake on gut microbiota, intestinal permeability and glycemic control in children with type 1 diabetes: study protocol for a randomized controlled trial. Trials 2016; 17 (01) 347
  • 42 Gurung M, Li Z, You H. et al. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine 2020; 51: 102590
  • 43 Khalili L, Alipour B, Jafarabadi MA, Hassanalilou T, Abbasi MM, Faraji I. Retraction Note: probiotic assisted weight management as a main factor for glycemic control in patients with type 2 diabetes: a randomized controlled trial. Diabetol Metab Syndr 2023; 15 (01) 109
  • 44 Abbasi B, Mirlohi M, Daniali M. et al. Effects of probiotic soy milk on lipid panel in type 2 diabetic patients with nephropathy: a double-blind randomized clinical trial. Prog Nutr 2018; 20: 70-78
  • 45 Babadi M, Khorshidi A, Aghadavood E. et al. The effects of probiotic supplementation on genetic and metabolic profiles in patients with gestational diabetes mellitus: a randomized, double-blind, placebo-controlled trial. Probiotics Antimicrob Proteins 2019; 11 (04) 1227-1235
  • 46 Liu Y, Liu W, Li J. et al. A polysaccharide extracted from Astragalus membranaceus residue improves cognitive dysfunction by altering gut microbiota in diabetic mice. Carbohydr Polym 2019; 205: 500-512
  • 47 Kim S, Goel R, Kumar A. et al. Imbalance of gut microbiome and intestinal epithelial barrier dysfunction in patients with high blood pressure. Clin Sci (Lond) 2018; 132 (06) 701-718
  • 48 Li J, Zhao F, Wang Y. et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome 2017; 5 (01) 14
  • 49 Wilck N, Matus MG, Kearney SM. et al. Salt-responsive gut commensal modulates TH17 axis and disease. Nature 2017; 551 (7682) 585-589
  • 50 Allison SJ. Hypertension: salt: the microbiome, immune function and hypertension. Nat Rev Nephrol 2018; 14 (02) 71
  • 51 Ellison DH, Welling P. Insights into salt handling and blood pressure. N Engl J Med 2021; 385 (21) 1981-1993
  • 52 Sircana A, De Michieli F, Parente R. et al. Gut microbiota, hypertension and chronic kidney disease: recent advances. Pharmacol Res 2019; 144: 390-408
  • 53 Huang DQ, El-Serag HB, Loomba R. Global epidemiology of NAFLD-related HCC: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol 2021; 18 (04) 223-238
  • 54 Sberna AL, Bouillet B, Rouland A. et al. European Association for the Study of the Liver (EASL), European Association for the Study of Diabetes (EASD) and European Association for the Study of Obesity (EASO) clinical practice recommendations for the management of non-alcoholic fatty liver disease: evaluation of their application in people with Type 2 diabetes. Diabet Med 2018; 35 (03) 368-375
  • 55 Anstee QM, Daly AK, Day CP. Genetics of alcoholic and nonalcoholic fatty liver disease. Semin Liver Dis 2011; 31 (02) 128-146
  • 56 Janssen AWF, Houben T, Katiraei S. et al. Modulation of the gut microbiota impacts nonalcoholic fatty liver disease: a potential role for bile acids. J Lipid Res 2017; 58 (07) 1399-1416
  • 57 Lin D, Sun Q, Liu Z. et al. Gut microbiota and bile acids partially mediate the improvement of fibroblast growth factor 21 on methionine-choline-deficient diet-induced non-alcoholic fatty liver disease mice. Free Radic Biol Med 2023; 195: 199-218
  • 58 Du F, Huang R, Lin D. et al. Resveratrol improves liver steatosis and insulin resistance in non-alcoholic fatty liver disease in association with the gut microbiota. Front Microbiol 2021; 12: 611323
  • 59 Song L, Li Y, Qu D. et al. The regulatory effects of phytosterol esters (PSEs) on gut flora and faecal metabolites in rats with NAFLD. Food Funct 2020; 11 (01) 977-991
  • 60 Shu Y, Huang Y, Dong W. et al. The polysaccharides from Auricularia auricula alleviate non-alcoholic fatty liver disease via modulating gut microbiota and bile acids metabolism. Int J Biol Macromol 2023; 246: 125662
  • 61 Tang Y, Chen B, Huang X. et al. Fu brick tea alleviates high fat induced non-alcoholic fatty liver disease by remodeling the gut microbiota and liver metabolism. Front Nutr 2022; 9: 1062323
  • 62 Han R, Qiu H, Zhong J. et al. Si Miao Formula attenuates non-alcoholic fatty liver disease by modulating hepatic lipid metabolism and gut microbiota. Phytomedicine 2021; 85: 153544
  • 63 Zhao Z, Wang J, Ren W. et al. Effect of Jiangan-Jiangzhi pill on gut microbiota and chronic inflammatory response in rats with non-alcoholic fatty liver. Chem Biodivers 2022; 19 (05) e202100987
  • 64 Zheng H, Dai H, Yan X, Xiang Q. Study on intestinal flora and asthma: knowledge graph analysis based on CiteSpace (2001–2021). J Asthma Allergy 2023; 16: 355-364
  • 65 Demirci M, Tokman HB, Uysal HK. et al. Reduced Akkermansia muciniphila and Faecalibacterium prausnitzii levels in the gut microbiota of children with allergic asthma. Allergol Immunopathol (Madr) 2019; 47 (04) 365-371
  • 66 Skalski JH, Limon JJ, Sharma P. et al. Expansion of commensal fungus Wallemia mellicola in the gastrointestinal mycobiota enhances the severity of allergic airway disease in mice. PLoS Pathog 2018; 14 (09) e1007260
  • 67 Spacova I, Petrova MI, Fremau A. et al. Intranasal administration of probiotic Lactobacillus rhamnosus GG prevents birch pollen-induced allergic asthma in a murine model. Allergy 2019; 74 (01) 100-110
  • 68 Raftis EJ, Delday MI, Cowie P. et al. Bifidobacterium breve MRx0004 protects against airway inflammation in a severe asthma model by suppressing both neutrophil and eosinophil lung infiltration. Sci Rep 2018; 8 (01) 12024
  • 69 Huang C-F, Chie W-C, Wang I-J. Efficacy of Lactobacillus administration in school-age children with asthma: a randomized, placebo-controlled trial. Nutrients 2018; 10 (11) 1678
  • 70 Kepert I, Fonseca J, Müller C. et al. D-tryptophan from probiotic bacteria influences the gut microbiome and allergic airway disease. J Allergy Clin Immunol 2017; 139 (05) 1525-1535
  • 71 Chen SM, Wu XY, Peng GY. et al. Based on 16S rRNA sequencing to study the effect of Shaoyao Gancao Decoction on the intestinal flora of bronchial asthma mice. J Beijing Univ Tradit Chin Med 2022; 45 (05) 492-499
  • 72 Zhang BB, Zeng MN, Zhang QQ. et al. Effects of Tingli Dazao Xiefei Decoction on the immune inflammation and intestinal flora in asthmatic rats. Yao Xue Xue Bao 2022; 57 (08) 2364-2377
  • 73 Jia W, Xu C, Zhao T. et al. Integrated network pharmacology and gut microbiota analysis to explore the mechanism of Sijunzi decoction involved in alleviating airway inflammation in a mouse model of asthma. Evid Based Complement Alternat Med 2023; 2023: 1130893
  • 74 Kong YH, Shi Q, Han N. et al. Structural modulation of gut microbiota in rats with allergic bronchial asthma treated with recuperating lung decoction. Biomed Environ Sci 2016; 29 (08) 574-583
  • 75 He Q, Liu C, Shen L. et al. Theory of the exterior-interior relationship between the lungs and the large intestine to explore the mechanism of Eriobotrya japonica leaf water extract in the treatment of cough variant asthma. J Ethnopharmacol 2021; 281: 114482
  • 76 de Oliveira GLV, Leite AZ, Higuchi BS, Gonzaga MI, Mariano VS. Intestinal dysbiosis and probiotic applications in autoimmune diseases. Immunology 2017; 152 (01) 1-12
  • 77 Wu X, He B, Liu J. et al. Molecular insight into gut microbiota and rheumatoid arthritis. Int J Mol Sci 2016; 17 (03) 431
  • 78 Horta-Baas G, Romero-Figueroa MDS, Montiel-Jarquín AJ, Pizano-Zárate ML, García-Mena J, Ramírez-Durán N. Intestinal dysbiosis and rheumatoid arthritis: a link between gut microbiota and the pathogenesis of rheumatoid arthritis. J Immunol Res 2017; 2017: 4835189
  • 79 Maeda Y, Kumanogoh A, Takeda K. [Altered composition of gut microbiota in rheumatoid arthritis patients]. Nihon Rinsho Meneki Gakkai Kaishi 2016; 39 (01) 59-63
  • 80 Sato K, Takahashi N, Kato T. et al. Aggravation of collagen-induced arthritis by orally administered Porphyromonas gingivalis through modulation of the gut microbiota and gut immune system. Sci Rep 2017; 7 (01) 6955
  • 81 Ben-Amram H, Bashi T, Werbner N. et al. Tuftsin-phosphorylcholine maintains normal gut microbiota in collagen induced arthritic mice. Front Microbiol 2017; 8: 1222
  • 82 Li Y, Liu C, Luo J. et al. Ershiwuwei Lvxue Pill alleviates rheumatoid arthritis by different pathways and produces changes in the gut microbiota. Phytomedicine 2022; 107: 154462
  • 83 Xiao M, Fu X, Ni Y. et al. Protective effects of Paederia scandens extract on rheumatoid arthritis mouse model by modulating gut microbiota. J Ethnopharmacol 2018; 226: 97-104
  • 84 Jiang ZM, Zeng SL, Huang TQ. et al. Sinomenine ameliorates rheumatoid arthritis by modulating tryptophan metabolism and activating aryl hydrocarbon receptor via gut microbiota regulation. Sci Bull (Beijing) 2023; 68 (14) 1540-1555
  • 85 Salari N, Hosseinian-Far A, Jalali R. et al. Prevalence of stress, anxiety, depression among the general population during the COVID-19 pandemic: a systematic review and meta-analysis. Global Health 2020; 16 (01) 57
  • 86 Radjabzadeh D, Bosch JA, Uitterlinden AG. et al. Gut microbiome-wide association study of depressive symptoms. Nat Commun 2022; 13 (01) 7128
  • 87 Strandwitz P, Kim KH, Terekhova D. et al. GABA-modulating bacteria of the human gut microbiota. Nat Microbiol 2019; 4 (03) 396-403
  • 88 Kelly JR, Borre Y, O' Brien C. et al. Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. J Psychiatr Res 2016; 82: 109-118
  • 89 Rudzki L, Ostrowska L, Pawlak D. et al. Probiotic Lactobacillus Plantarum 299v decreases kynurenine concentration and improves cognitive functions in patients with major depression: a double-blind, randomized, placebo controlled study. Psychoneuroendocrinology 2019; 100: 213-222
  • 90 Li Y, Peng Y, Ma P. et al. Antidepressant-like effects of Cistanche tubulosa extract on chronic unpredictable stress rats through restoration of gut microbiota homeostasis. Front Pharmacol 2018; 9: 967
  • 91 Hao W, Wu J, Yuan N. et al. Xiaoyaosan improves antibiotic-induced depressive-like and anxiety-like behavior in mice through modulating the gut microbiota and regulating the NLRP3 inflammasome in the colon. Front Pharmacol 2021; 12: 619103
  • 92 Korteniemi J, Karlsson L, Aatsinki A. Systematic review: autism spectrum disorder and the gut microbiota. Acta Psychiatr Scand 2023; 148 (03) 242-254
  • 93 Strati F, Cavalieri D, Albanese D. et al. New evidences on the altered gut microbiota in autism spectrum disorders. Microbiome 2017; 5 (01) 24
  • 94 Tabouy L, Getselter D, Ziv O. et al. Dysbiosis of microbiome and probiotic treatment in a genetic model of autism spectrum disorders. Brain Behav Immun 2018; 73: 310-319
  • 95 Grimaldi R, Gibson GR, Vulevic J. et al. A prebiotic intervention study in children with autism spectrum disorders (ASDs). Microbiome 2018; 6 (01) 133
  • 96 Cristiano C, Pirozzi C, Coretti L. et al. Palmitoylethanolamide counteracts autistic-like behaviours in BTBR T+tf/J mice: contribution of central and peripheral mechanisms. Brain Behav Immun 2018; 74: 166-175
  • 97 Kang DW, Adams JB, Gregory AC. et al. Microbiota transfer therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study. Microbiome 2017; 5 (01) 10
  • 98 Jiang C, Li G, Huang P, Liu Z, Zhao B. The gut microbiota and Alzheimer's disease. J Alzheimers Dis 2017; 58 (01) 1-15
  • 99 Zhang L, Wang Y, Xiayu X. et al. Altered gut microbiota in a mouse model of Alzheimer's disease. J Alzheimers Dis 2017; 60 (04) 1241-1257
  • 100 Bonfili L, Cecarini V, Berardi S. et al. Microbiota modulation counteracts Alzheimer's disease progression influencing neuronal proteolysis and gut hormones plasma levels. Sci Rep 2017; 7 (01) 2426
  • 101 Leblhuber F, Egger M, Schuetz B, Fuchs D. Commentary: effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer's disease: a randomized, double-blind and controlled trial. Front Aging Neurosci 2018; 10: 54
  • 102 Akbari E, Asemi Z, Daneshvar Kakhaki R. et al. Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer's disease: a randomized, double-blind and controlled trial. Front Aging Neurosci 2016; 8: 256
  • 103 Bonfili L, Cecarini V, Cuccioloni M. et al. SLAB51 probiotic formulation activates SIRT1 pathway promoting antioxidant and neuroprotective effects in an AD mouse model. Mol Neurobiol 2018; 55 (10) 7987-8000
  • 104 Nimgampalle M, Kuna Y. Anti-Alzheimer properties of probiotic, Lactobacillus plantarum MTCC 1325 in Alzheimer's disease induced albino rats. J Clin Diagn Res 2017; 11 (08) KC01-KC05
  • 105 Song M, Chan AT. Environmental factors, gut microbiota, and colorectal cancer prevention. Clin Gastroenterol Hepatol 2019; 17 (02) 275-289
  • 106 Bultman SJ. Interplay between diet, gut microbiota, epigenetic events, and colorectal cancer. Mol Nutr Food Res 2017; 61 (01) 10
  • 107 Wang J, Lu R, Fu X. et al. Novel regulatory roles of Wnt1 in infection-associated colorectal cancer. Neoplasia 2018; 20 (05) 499-509
  • 108 Polakowski CB, Kato M, Preti VB, Schieferdecker MEM, Ligocki Campos AC. Impact of the preoperative use of synbiotics in colorectal cancer patients: A prospective, randomized, double-blind, placebo-controlled study. Nutrition 2019; 58: 40-46
  • 109 Borzì AM, Biondi A, Basile F, Luca S, Vicari ESD, Vacante M. Olive oil effects on colorectal cancer. Nutrients 2018; 11 (01) 32
  • 110 Luo JM, Zhang C, Liu R. et al. Ganoderma lucidum polysaccharide alleviating colorectal cancer by alteration of special gut bacteria and regulation of gene expression of colonic epithelial cells. J Funct Foods 2018; 47: 127-135
  • 111 Tapper EB, Parikh ND. Mortality due to cirrhosis and liver cancer in the United States, 1999-2016: observational study. BMJ 2018; 362: k2817
  • 112 Liu S, Yang X. Intestinal flora plays a role in the progression of hepatitis-cirrhosis-liver cancer. Front Cell Infect Microbiol 2023; 13: 1140126
  • 113 Yang X, Lu D, Zhuo J, Lin Z, Yang M, Xu X. The gut-liver axis in immune remodeling: new insight into liver diseases. Int J Biol Sci 2020; 16 (13) 2357-2366
  • 114 Hartmann N, Kronenberg M. Cancer immunity thwarted by the microbiome. Science 2018; 360 (6391) 858-859
  • 115 Li J, Sung CYJ, Lee N. et al. Probiotics modulated gut microbiota suppresses hepatocellular carcinoma growth in mice. Proc Natl Acad Sci U S A 2016; 113 (09) E1306-E1315
  • 116 Zhen H, Qian X, Fu X, Chen Z, Zhang A, Shi L. Regulation of Shaoyao Ruangan mixture on intestinal flora in mice with primary liver cancer. Integr Cancer Ther 2019; 18: 1534735419843178
  • 117 Li Z, Zhao Y, Cheng J. et al. Integrated plasma metabolomics and gut microbiota analysis: the intervention effect of Jiawei Xiaoyao San on liver depression and spleen deficiency liver cancer rats. Front Pharmacol 2022; 13: 906256
  • 118 Zhao Y, Liu Y, Li S. et al. Role of lung and gut microbiota on lung cancer pathogenesis. J Cancer Res Clin Oncol 2021; 147 (08) 2177-2186
  • 119 Zhang WQ, Zhao SK, Luo JW. et al. Alterations of fecal bacterial communities in patients with lung cancer. Am J Transl Res 2018; 10 (10) 3171-3185
  • 120 Zhuang H, Cheng L, Wang Y. et al. Dysbiosis of the gut microbiome in lung cancer. Front Cell Infect Microbiol 2019; 9: 112
  • 121 Gui QF, Lu HF, Zhang CX, Xu ZR, Yang YH. Well-balanced commensal microbiota contributes to anti-cancer response in a lung cancer mouse model. Genet Mol Res 2015; 14 (02) 5642-5651
  • 122 Jiang RY, Wang T, Lan QY. et al. BuFeiXiaoJiYin ameliorates the NLRP3 inflammation response and gut microbiota in mice with lung cancer companied with Qi-yin deficiency. Cancer Cell Int 2022; 22 (01) 121
  • 123 Cao B, Wang S, Li R. et al. Xihuang Pill enhances anticancer effect of anlotinib by regulating gut microbiota composition and tumor angiogenesis pathway. Biomed Pharmacother 2022; 151: 113081