Semin intervent Radiol 2023; 40(05): 461-466
DOI: 10.1055/s-0043-1772814
Back to Basics

Transarterial Radioembolization: Overview of Radioembolic Devices

Muhamad Serhal
1   Section of Interventional Radiology, Department of Radiology, Northwestern Memorial Hospital, Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois
,
Andrew C. Gordon
1   Section of Interventional Radiology, Department of Radiology, Northwestern Memorial Hospital, Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois
,
Daniel B. Brown
2   Division of Interventional Radiology, Vanderbilt University Medical Center, Nashville, Tennessee
,
Beau B. Toskich
3   Division of Interventional Radiology, Mayo Clinic Florida, Jacksonville, Florida
,
Robert J. Lewandowski
1   Section of Interventional Radiology, Department of Radiology, Northwestern Memorial Hospital, Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois
› Institutsangaben

Transarterial radioembolization (TARE) is an intra-arterial radiation therapy for patients with primary and secondary hepatic malignancies, and its role outside the liver is evolving. The principle of radioembolization is the transcatheter, intra-arterial delivery of a radioisotope via tumor feeding arteries and treating the perfused tissue with brachytherapy. Hypervascular tumors preferentially receive the radioisotope-carrying microspheres compared to the normal hepatic parenchyma.[1] Because of this, knowledge of hepatic arterial anatomy, principles of transcatheter intra-arterial embolization, and radioisotope (radionuclide or radioactive isotope) characteristics is important to optimize treatment strategies. This article provides a general, back-to-the-basics, overview of available radioembolic devices and an update on radioembolic devices in development.



Publikationsverlauf

Artikel online veröffentlicht:
02. November 2023

© 2023. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Lewandowski RJ, Geschwind JF, Liapi E, Salem R. Transcatheter intraarterial therapies: rationale and overview. Radiology 2011; 259 (03) 641-657
  • 2 Muller JH, Rossier PH. A new method for the treatment of cancer of the lungs by means of artificial radioactivity. Acta Radiol 1951; 35 (5-6): 449-468
  • 3 Bouvry C, Palard X, Edeline J. et al. Transarterial radioembolization (TARE) agents beyond 90Y-microspheres. BioMed Res Int 2018; 2018: 1435302
  • 4 Andrews JC, Walker SC, Ackermann RJ, Cotton LA, Ensminger WD, Shapiro B. Hepatic radioembolization with yttrium-90 containing glass microspheres: preliminary results and clinical follow-up. J Nucl Med 1994; 35 (10) 1637-1644
  • 5 Dancey JE, Shepherd FA, Paul K. et al. Treatment of nonresectable hepatocellular carcinoma with intrahepatic 90Y-microspheres. J Nucl Med 2000; 41 (10) 1673-1681
  • 6 Bretagne JF, Raoul JL, Bourguet P. et al. Hepatic artery injection of I-131-labeled lipiodol. Part II. Preliminary results of therapeutic use in patients with hepatocellular carcinoma and liver metastases. Radiology 1988; 168 (02) 547-550
  • 7 Mumper RJ, Ryo UY, Jay M. Neutron-activated holmium-166-poly (L-lactic acid) microspheres: a potential agent for the internal radiation therapy of hepatic tumors. J Nucl Med 1991; 32 (11) 2139-2143
  • 8 De La Vega JC, Esquinas PL, Rodríguez-Rodríguez C. et al. Radioembolization of hepatocellular carcinoma with built-in dosimetry: first in vivo results with uniformly-sized, biodegradable microspheres labeled with 188Re. Theranostics 2019; 9 (03) 868-883
  • 9 Kennedy AS, Nutting C, Coldwell D, Gaiser J, Drachenberg C. Pathologic response and microdosimetry of (90)Y microspheres in man: review of four explanted whole livers. Int J Radiat Oncol Biol Phys 2004; 60 (05) 1552-1563
  • 10 Sacco R, Mismas V, Marceglia S. et al. Transarterial radioembolization for hepatocellular carcinoma: an update and perspectives. World J Gastroenterol 2015; 21 (21) 6518-6525
  • 11 Pasciak AS, Manupipatpong S, Hui FK. et al. Yttrium-90 radioembolization as a possible new treatment for brain cancer: proof of concept and safety analysis in a canine model. EJNMMI Res 2020; 10 (01) 96
  • 12 Mouli SK, Raiter S, Harris K. et al. Yttrium-90 radioembolization to the prostate gland: proof of concept in a canine model and clinical translation. J Vasc Interv Radiol 2021; 32 (08) 1103-1112.e12
  • 13 Hamoui N, Gates VL, Gonzalez J, Lewandowski RJ, Salem R. Radioembolization of renal cell carcinoma using yttrium-90 microspheres. J Vasc Interv Radiol 2013; 24 (02) 298-300
  • 14 Ricke J, Großer O, Amthauer H. Y90-radioembolization of lung metastases via the bronchial artery: a report of 2 cases. Cardiovasc Intervent Radiol 2013; 36 (06) 1664-1669
  • 15 Nijsen JF, van het Schip AD, Hennink WE, Rook DW, van Rijk PP, de Klerk JM. Advances in nuclear oncology: microspheres for internal radionuclide therapy of liver tumours. Curr Med Chem 2002; 9 (01) 73-82
  • 16 Brechbiel MW. Targeted alpha-therapy: past, present, future?. Dalton Trans 2007; (43) 4918-4928
  • 17 Li R, Li D, Jia G, Li X, Sun G, Zuo C. Diagnostic performance of theranostic radionuclides used in transarterial radioembolization for liver cancer. Front Oncol 2021; 10: 551622
  • 18 Kennedy AS, Kleinstreuer C, Basciano CA, Dezarn WA. Computer modeling of yttrium-90-microsphere transport in the hepatic arterial tree to improve clinical outcomes. Int J Radiat Oncol Biol Phys 2010; 76 (02) 631-637
  • 19 Salem R, Mazzaferro V, Sangro B. Yttrium 90 radioembolization for the treatment of hepatocellular carcinoma: biological lessons, current challenges, and clinical perspectives. Hepatology 2013; 58 (06) 2188-2197
  • 20 Kim YC, Kim YH, Uhm SH. et al. Radiation safety issues in y-90 microsphere selective hepatic radioembolization therapy: possible radiation exposure from the patients. Nucl Med Mol Imaging 2010; 44 (04) 252-260
  • 21 Henry EC, Strugari M, Mawko G. et al. Precision dosimetry in yttrium-90 radioembolization through CT imaging of radiopaque microspheres in a rabbit liver model. EJNMMI Phys 2022; 9 (01) 21
  • 22 Vente MA, Nijsen JF, de Roos R. et al. Neutron activation of holmium poly(L-lactic acid) microspheres for hepatic arterial radio-embolization: a validation study. Biomed Microdevices 2009; 11 (04) 763-772
  • 23 Nijsen JF, Krijger GC, van Het Schip AD. The bright future of radionuclides for cancer therapy. Anticancer Agents Med Chem 2007; 7 (03) 271-290
  • 24 Seevinck PR, van de Maat GH, de Wit TC, Vente MA, Nijsen JF, Bakker CJ. Magnetic resonance imaging-based radiation-absorbed dose estimation of 166Ho microspheres in liver radioembolization. Int J Radiat Oncol Biol Phys 2012; 83 (03) e437-e444
  • 25 van de Maat GH, Seevinck PR, Elschot M. et al. MRI-based biodistribution assessment of holmium-166 poly(L-lactic acid) microspheres after radioembolisation. Eur Radiol 2013; 23 (03) 827-835
  • 26 Smits ML, Nijsen JF, van den Bosch MA. et al. Holmium-166 radioembolization for the treatment of patients with liver metastases: design of the phase I HEPAR trial. J Exp Clin Cancer Res 2010; 29 (01) 70
  • 27 Braat AJAT, Prince JF, van Rooij R, Bruijnen RCG, van den Bosch MAAJ, Lam MGEH. Safety analysis of holmium-166 microsphere scout dose imaging during radioembolisation work-up: a cohort study. Eur Radiol 2018; 28 (03) 920-928
  • 28 Smits MLJ, Dassen MG, Prince JF. et al. The superior predictive value of 166Ho-scout compared with 99mTc-macroaggregated albumin prior to 166Ho-microspheres radioembolization in patients with liver metastases. Eur J Nucl Med Mol Imaging 2020; 47 (04) 798-806
  • 29 Stella M, Braat AJAT, van Rooij R, de Jong HWAM, Lam MGEH. Holmium-166 radioembolization: current status and future prospective. Cardiovasc Intervent Radiol 2022; 45 (11) 1634-1645
  • 30 Reinders MTM, Smits MLJ, van Roekel C, Braat AJAT. Holmium-166 microsphere radioembolization of hepatic malignancies. Semin Nucl Med 2019; 49 (03) 237-243
  • 31 Alrfooh A, Patel A, Laroia S. Transarterial radioembolization agents: a review of the radionuclide agents and the carriers. Nucl Med Mol Imaging 2021; 55 (04) 162-172
  • 32 Morphis M, van Staden JA, du Raan H, Ljungberg M. Evaluation of iodine-123 and iodine-131 SPECT activity quantification: a Monte Carlo study. EJNMMI Phys 2021; 8 (01) 61
  • 33 Raoul JI, Bretagne JF, Caucanas JP. et al. Internal radiation therapy for hepatocellular carcinoma. Results of a French multicenter phase II trial of transarterial injection of iodine 131-labeled lipiodol. Cancer 1992; 69 (02) 346-352
  • 34 Raoul JL, Guyader D, Bretagne JF. et al. Randomized controlled trial for hepatocellular carcinoma with portal vein thrombosis: intra-arterial iodine-131-iodized oil versus medical support. J Nucl Med 1994; 35 (11) 1782-1787
  • 35 Raoul JL, Boucher E, Roland V, Garin E. 131-Iodine lipiodol therapy in hepatocellular carcinoma. Q J Nucl Med Mol Imaging 2009; 53 (03) 348-355
  • 36 Lau WY, Leung TW, Ho SK. et al. Adjuvant intra-arterial iodine-131-labelled lipiodol for resectable hepatocellular carcinoma: a prospective randomised trial. Lancet 1999; 353 (9155) 797-801
  • 37 Perring S, Hind R, Fleming J, Birch S, Batty V, Taylor I. Dosimetric assessment of radiolabelled lipiodol as a potential therapeutic agent in colorectal liver metastases using combined CT and SPECT. Nucl Med Commun 1994; 15 (01) 34-38
  • 38 Bozkurt MF, Salanci BV, Uğur Ö. Intra-arterial radionuclide therapies for liver tumors. Semin Nucl Med 2016; 46 (04) 324-339
  • 39 Bernal P, Raoul JL, Vidmar G. et al. Intra-arterial rhenium-188 lipiodol in the treatment of inoperable hepatocellular carcinoma: results of an IAEA-sponsored multination study. Int J Radiat Oncol Biol Phys 2007; 69 (05) 1448-1455
  • 40 De Ruyck K, Lambert B, Bacher K. et al. Biologic dosimetry of 188Re-HDD/lipiodol versus 131I-lipiodol therapy in patients with hepatocellular carcinoma. J Nucl Med 2004; 45 (04) 612-618
  • 41 Wunderlich G, Pinkert J, Stintz M, Kotzerke J. Labeling and biodistribution of different particle materials for radioembolization therapy with 188Re. Appl Radiat Isot 2005; 62 (05) 745-750
  • 42 Srinivas SM, Nasr EC, Kunam VK, Bullen JA, Purysko AS. Administered activity and outcomes of glass versus resin (90)Y microsphere radioembolization in patients with colorectal liver metastases. J Gastrointest Oncol 2016; 7 (04) 530-539
  • 43 Westcott MA, Coldwell DM, Liu DM, Zikria JF. The development, commercialization, and clinical context of yttrium-90 radiolabeled resin and glass microspheres. Adv Radiat Oncol 2016; 1 (04) 351-364
  • 44 Ehrhardt GJ, Day DE. Therapeutic use of 90Y microspheres. Int J Rad Appl Instrum B 1987; 14 (03) 233-242
  • 45 Villalobos A, Soliman MM, Majdalany BS. et al. Yttrium-90 radioembolization dosimetry: what trainees need to know. Semin Intervent Radiol 2020; 37 (05) 543-554
  • 46 Pasciak AS, Abiola G, Liddell RP. et al. The number of microspheres in Y90 radioembolization directly affects normal tissue radiation exposure. Eur J Nucl Med Mol Imaging 2020; 47 (04) 816-827
  • 47 Basciano C, Kleinstreuer C, Kennedy A. Computational fluid dynamics modeling of 90Y microspheres in human hepatic tumors. J Nucl Med Radiat Therapy 2011; 01 DOI: 10.4172/2155-9619.1000112.
  • 48 Caine M, McCafferty MS, McGhee S. et al. Impact of yttrium-90 microsphere density, flow dynamics, and administration technique on spatial distribution: analysis using an in vitro model. J Vasc Interv Radiol 2017; 28 (02) 260-268.e2
  • 49 Piana PM, Bar V, Doyle L. et al. Early arterial stasis during resin-based yttrium-90 radioembolization: incidence and preliminary outcomes. HPB (Oxford) 2014; 16 (04) 336-341
  • 50 Koran ME, Stewart S, Baker JC. et al. Five percent dextrose maximizes dose delivery of yttrium-90 resin microspheres and reduces rates of premature stasis compared to sterile water. Biomed Rep 2016; 5 (06) 745-748
  • 51 Workman C, Doyle P, Grice J. et al. Abstract no. 261 assessment of delivery, dosimetry and imaging response with FLEX versus day of calibration resin 90Y microspheres for hepatocellular carcinoma. J Vasc Interv Radiol 2023; 34 (03) S118-S119
  • 52 Gulec SA, McGoron AJ. Radiomicrosphere dosimetry: principles and current state of the art. Semin Nucl Med 2022; 52 (02) 215-228
  • 53 Teow Y, Valiyaveettil S. Active targeting of cancer cells using folic acid-conjugated platinum nanoparticles. Nanoscale 2010; 2 (12) 2607-2613
  • 54 Montazeri SA, De la Garza-Ramos C, Lewis AR. et al. Hepatocellular carcinoma radiation segmentectomy treatment intensification prior to liver transplantation increases rates of complete pathologic necrosis: an explant analysis of 75 tumors. Eur J Nucl Med Mol Imaging 2022; 49 (11) 3892-3897