Subscribe to RSS
DOI: 10.1055/s-0043-1770131
Prediction of Perinatal and Neurodevelopmental Outcomes in Newborns with a Birth Weight below the 3rd Percentile: Performance of Two International Curves – Prospective Cohort from a Brazilian City
Predição de resultados perinatais e de neurodesenvolvimento em recém-nascidos com peso ao nascer abaixo do percentil 3: Desempenho de duas curvas internacionais – coorte prospectiva de uma cidade brasileiraAbstract
Objectives To evaluate the performance of Intergrowth-21 st (INT) and Fetal Medicine Foundation (FMF) curves in predicting perinatal and neurodevelopmental outcomes in newborns weighing below the 3rd percentile.
Methods Pregnant women with a single fetus aged less than 20 weeks from a general population in non-hospital health units were included. Their children were evaluated at birth and in the second or third years of life. Newborns (NB) had their weight percentiles calculated for both curves. Sensitivity, specificity, positive (PPV) and negative predictive value (NPV), and area under the ROC curve (ROC-AUC) for perinatal outcomes and neurodevelopmental delay were calculated using birth weight < 3rd percentile as the cutoff.
Results A total of 967 children were evaluated. Gestational age at birth was 39.3 (±3.6) weeks and birth weight was 3,215.0 (±588.0) g. INT and FMF classified 19 (2.4%) and 49 (5.7%) newborns below the 3rd percentile, respectively. The prevalence of preterm birth, tracheal intubation >24 hours in the first three months of life, 5th minute Apgar <7, admission to a neonatal care unit (NICU admission), cesarean section rate, and the neurodevelopmental delay was 9.3%, 3.3%, 1.3%, 5.9%, 38.9%, and 7.3% respectively. In general, the 3rd percentile of both curves showed low sensitivity and PPV and high specificity and NPV. The 3rd percentile of FMF showed superior sensitivity for preterm birth, NICU admission, and cesarean section rate. INT was more specific for all outcomes and presented a higher PPV for the neurodevelopmental delay. However, except for a slight difference in the prediction of preterm birth in favor of INT, the ROC curves showed no differences in the prediction of perinatal and neurodevelopmental outcomes.
Conclusion Birth weight below the 3rd percentile according to INT or FMF alone was insufficient for a good diagnostic performance of perinatal and neurodevelopmental outcomes. The analyzes performed could not show that one curve is better than the other in our population. INT may have an advantage in resource contingency scenarios as it discriminates fewer NB below the 3rd percentile without increasing adverse outcomes.
Resumo
Objetivos Avaliar o desempenho das curvas de Intergrowth-21 st (INT) e Fetal Medicine Foundation (FMF) na predição de resultados perinatais e de neurodesenvolvimento de recém-nascidos com peso abaixo do percentil 3.
Métodos Foram incluídas gestantes de feto único com idade inferior a 20 semanas de uma população geral em unidades de saúde não hospitalares. Seus filhos foram avaliados ao nascimento e no segundo ou terceiro anos de vida. Os recém-nascidos tiveram seus percentis de peso calculados para ambas as curvas. Sensibilidade, especificidade, valor preditivo positivo (VPP) e negativo (VPN) e área sob a curva ROC (ROC-AUC) foram calculados para desfechos perinatais e atraso de neurodesenvolvimento considerando o peso ao nascimento menor que o percentil 3 como ponto de corte.
Resultados Um total de 967 crianças foram avaliadas ao nascimento e no segundo ou terceiro anos de vida. A idade gestacional ao nascer foi de 39,3 (±3,6) semanas e o peso ao nascimento foi de 3.215,0 (±588,0) g. INT e FMF classificaram 19 (2,4%) e 49 (5,7%) recém-nascidos abaixo do percentil 3, respectivamente. A prevalência de parto pré-termo, intubação traqueal > 24 horas nos primeiros três meses de vida, Apgar de 5° minuto < 7, internação em unidade de terapia intensiva neonatal (internação em UTIN), taxa de cesariana e atraso de neurodesenvolvimento foi 9,3%, 3,3%, 1,3%, 5,9%, 38,9% e 7,3% respectivamente. Em geral, o percentil 3 de ambas as curvas apresentou baixa sensibilidade e VPP e alta especificidade e VPN. O percentil 3 de FMF mostrou sensibilidade superior para parto prematuro, internação em UTIN e taxa de cesariana. INT foi mais específico para todos os desfechos e apresentou maior VPP para o atraso do neurodesenvolvimento. Entretanto, exceto por uma pequena diferença na predição de parto pré-termo em favor de INT, as curvas ROC não mostraram diferenças na predição de resultados perinatais e de desenvolvimento neurológico.
Conclusão O peso ao nascer abaixo do percentil 3 segundo INT ou FMF isoladamente foi insuficiente para um bom desempenho diagnóstico de desfechos perinatais e de neurodesenvolvimento. As análises realizadas não puderam mostrar que uma curva é melhor que a outra em nossa população. INT pode ter vantagem em cenários de contingência de recursos, pois discrimina menos recém-nascidos abaixo do percentil 3 sem aumentar os desfechos adversos.
Contributions
All authors participated in the concept and design of the present study; analysis and interpretation of data; draft or revision of the manuscript, and they have approved the manuscript as submitted. All authors are responsible for the reported research.
Publication History
Received: 06 May 2022
Accepted: 02 February 2023
Article published online:
20 June 2023
© 2023. Federação Brasileira de Ginecologia e Obstetrícia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)
Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil
-
References
- 1 McIntire DD, Bloom SL, Casey BM, Leveno KJ. Birth weight in relation to morbidity and mortality among newborn infants. N Engl J Med 1999; 340 (16) 1234-1238
- 2 Sacchi C, Marino C, Nosarti C, Vieno A, Visentin S, Simonelli A. Association of intrauterine growth restriction and small for gestational age status with childhood cognitive outcomes: a systematic review and meta-analysis. JAMA Pediatr 2020; 174 (08) 772-781
- 3 de Mendonça ELSS, de Lima Macêna M, Bueno NB, de Oliveira ACM, Mello CS. Premature birth, low birth weight, small for gestational age and chronic non-communicable diseases in adult life: A systematic review with meta-analysis. Early Hum Dev 2020; 149: 105154
- 4 Lees C, Marlow N, Arabin B. et al; TRUFFLE Group. Perinatal morbidity and mortality in early-onset fetal growth restriction: cohort outcomes of the trial of randomized umbilical and fetal flow in Europe (TRUFFLE). Ultrasound Obstet Gynecol 2013; 42 (04) 400-408
- 5 Boivin MJ, Kakooza AM, Warf BC, Davidson LL, Grigorenko EL. Reducing neurodevelopmental disorders and disability through research and interventions. Nature 2015; 527 (7578): S155-S160
- 6 Hadlock FP, Harrist RB, Martinez-Poyer J. In utero analysis of fetal growth: a sonographic weight standard. Radiology 1991; 181 (01) 129-133
- 7 Kiserud T, Piaggio G, Carroli G. et al. The World Health Organization fetal growth charts: a multinational longitudinal study of ultrasound biometric measurements and estimated fetal weight. PLoS Med 2017; 14 (01) e1002220
- 8 Mikolajczyk RT, Zhang J, Betran AP. et al. A global reference for fetal-weight and birthweight percentiles. Lancet 2011; 377 (9780): 1855-1861
- 9 Papageorghiou AT, Ohuma EO, Altman DG. et al; International Fetal and Newborn Growth Consortium for the 21st Century (INTERGROWTH-21st). International standards for fetal growth based on serial ultrasound measurements: the Fetal Growth Longitudinal Study of the INTERGROWTH-21st Project. Lancet 2014; 384 (9946): 869-879
- 10 Nicolaides KH, Wright D, Syngelaki A, Wright A, Akolekar R. Fetal Medicine Foundation fetal and neonatal population weight charts. Ultrasound Obstet Gynecol 2018; 52 (01) 44-51
- 11 Fenton TR, Kim JH. A systematic review and meta-analysis to revise the Fenton growth chart for preterm infants. BMC Pediatr 2013; 13 (01) 59
- 12 Alexander GR, Himes JH, Kaufman RB, Mor J, Kogan M. A United States national reference for fetal growth. Obstet Gynecol 1996; 87 (02) 163-168
- 13 Cheng YKY, Lu J, Leung TY, Chan YM, Sahota DS. Prospective assessment of INTERGROWTH-21st and World Health Organization estimated fetal weight reference curves. Ultrasound Obstet Gynecol 2018; 51 (06) 792-798
- 14 Ioannou C, Talbot K, Ohuma E. et al. Systematic review of methodology used in ultrasound studies aimed at creating charts of fetal size. BJOG 2012; 119 (12) 1425-1439
- 15 Andreasen LA, Tabor A, Nørgaard LN, Rode L, Gerds TA, Tolsgaard MG. Detection of growth-restricted fetuses during pregnancy is associated with fewer intrauterine deaths but increased adverse childhood outcomes: an observational study. BJOG 2021; 128 (01) 77-85
- 16 da Silva AA, Simões VM, Barbieri MA. et al. A protocol to identify non-classical risk factors for preterm births: the Brazilian Ribeirão Preto and São Luís prenatal cohort (BRISA). Reprod Health 2014; 11 (01) 79
- 17 Bayley N. 2006. Bayley scales of infant and toddler development: BayleyIII (Vol. 7). San Antonio, TX: Harcourt Assessment, Psych. Corporation;
- 18 Unterscheider J, Daly S, Geary MP. et al. Optimizing the definition of intrauterine growth restriction: the multicenter prospective PORTO Study. Am J Obstet Gynecol 2013; 208 (04) 290.e1-290.e6
- 19 Unterscheider J, O'Donoghue K, Daly S. et al. Fetal growth restriction and the risk of perinatal mortality-case studies from the multicentre PORTO study. BMC Pregnancy Childbirth 2014; 14 (01) 63
- 20 Gordijn SJ, Beune IM, Thilaganathan B. et al. Consensus definition of fetal growth restriction: a Delphi procedure. Ultrasound Obstet Gynecol 2016; 48 (03) 333-339
- 21 Beune IM, Bloomfield FH, Ganzevoort W. et al. Consensus based definition of growth restriction in the newborn. J Pediatr 2018; 196: 71-76.e1
- 22 INTERGROWTH-21st [Internet]. Oxford: The University of Oxford; [cited 2019 Nov 10]. Available from http://intergrowth21.ndog.ox.ac.uk/en/ManualEntry/Compute
- 23 The Fetal Medicine Foundation [Internet]. London: The Fetal Medicine Foundation; [cited 2019 Nov 10]. Available from: https://fetalmedicine.org/research/assess/bw
- 24 Villar J, Cheikh Ismail L, Victora CG. et al; International Fetal and Newborn Growth Consortium for the 21st Century (INTERGROWTH-21st). International standards for newborn weight, length, and head circumference by gestational age and sex: the Newborn Cross-Sectional Study of the INTERGROWTH-21st Project. Lancet 2014; 384 (9946): 857-868
- 25 de Vries LS, Jongmans MJ. Long-term outcome after neonatal hypoxic-ischaemic encephalopathy. Arch Dis Child Fetal Neonatal Ed 2010; 95 (03) F220-F224
- 26 Wallander JL, Bann C, Chomba E. et al. Developmental trajectories of children with birth asphyxia through 36 months of age in low/low-middle income countries. Early Hum Dev 2014; 90 (07) 343-348
- 27 Maitre NL, Slaughter JC, Aschner JL. Early prediction of cerebral palsy after neonatal intensive care using motor development trajectories in infancy. Early Hum Dev. 2013;89(10):781–786. Am J Obstet Gynecol 2018; 218 (02) S692-S99
- 28 Monier I, Blondel B, Ego A, Kaminiski M, Goffinet F, Zeitlin J. Poor effectiveness of antenatal detection of fetal growth restriction and consequences for obstetric management and neonatal outcomes: a French national study. BJOG 2015; 122 (04) 518-527
- 29 Nwabuobi C, Odibo L, Camisasca-Lopina H, Leavitt K, Tuuli M, Odibo AO. Comparing INTERGROWTH-21st Century and Hadlock growth standards to predict small for gestational age and short-term neonatal outcomes. J Matern Fetal Neonatal Med 2020; 33 (11) 1906-1912
- 30 Vieira MC, Relph S, Persson M, Seed PT, Pasupathy D. Determination of birth-weight centile thresholds associated with adverse perinatal outcomes using population, customised, and Intergrowth charts: A Swedish population-based cohort study. PLoS Med 2019; 16 (09) e1002902
- 31 Barros AJ, da Silva dos Santos I, Victora CG. et al. The 2004 Pelotas birth cohort: methods and description. Rev Saude Publica 2006; 40 (03) 402-413
- 32 Passini Jr R, Cecatti JG, Lajos GJ. et al; Brazilian Multicentre Study on Preterm Birth study group. Brazilian multicentre study on preterm birth (EMIP): prevalence and factors associated with spontaneous preterm birth. PLoS One 2014; 9 (10) e109069
- 33 American College of Obstetricians and Gynecologists. Hypertension in pregnancy. Report of the American College of Obstetricians and Gynecologists' task force on hypertension in pregnancy. Obstet Gynecol 2013; 122 (05) 1122-1131
- 34 Azagba S, Manzione L, Shan L, King J. Trends in smoking during pregnancy by socioeconomic characteristics in the United States, 2010-2017. BMC Pregnancy Childbirth 2020; 20 (01) 52
- 35 Kajdy A, Modzelewski J, Filipecka-Tyczka D, Pokropek A, Rabijewski M. Development of birth weight for gestational age charts and comparison with currently used charts: defining growth in the Polish population. J Matern Fetal Neonatal Med 2019; •••: 1-8
- 36 Anderson NH, Sadler LC, McKinlay CJD, McCowan LME. INTERGROWTH-21st vs customized birthweight standards for identification of perinatal mortality and morbidity. Am J Obstet Gynecol 2016; 214 (04) 509.e1-509.e7
- 37 Francis A, Hugh O, Gardosi J. Customized vs INTERGROWTH-21st standards for the assessment of birthweight and stillbirth risk at term. Am J Obstet Gynecol 2018; 218 (2S): S692-S699
- 38 Duncan J, Leavitt K, Duncan K, Vilchez G. Detection of small for gestational age in preterm prelabor rupture of membranes by Hadlock versus the Fetal Medicine Foundation growth charts. Obstet Gynecol Sci 2021; 64 (03) 248-256