Semin intervent Radiol 2023; 40(03): 315-322
DOI: 10.1055/s-0043-1769744
Back to Basics

Embolic Agents: Particles

Sean Lee
1   Touro College of Osteopathic Medicine, New York City, New York
,
Abheek Ghosh
2   Division of Vascular and Interventional Radiology, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland
,
Nicholas Xiao
3   Division of Interventional Radiology, Department of Radiology, Northwestern University, Chicago, Illinois
,
Andrew C. Gordon
3   Division of Interventional Radiology, Department of Radiology, Northwestern University, Chicago, Illinois
,
Negar Heidarpour
1   Touro College of Osteopathic Medicine, New York City, New York
,
Brian Funaki
4   Division of Vascular and Interventional Radiology, University of Chicago Medicine, Chicago, Illinois
,
Robert J. Lewandowski
3   Division of Interventional Radiology, Department of Radiology, Northwestern University, Chicago, Illinois
› Author Affiliations

Compared with other embolic agents, particles offer distinct attributes for a broad range of clinical applications, including treatment of vascular tumors to achieving hemostasis in life-threatening emergencies.[1] Microparticle embolization is often the agent of choice when smaller, more distal vessels are targeted for occlusion. Due to their varied attributes, including size, shapes (i.e., microspheres), and material composition, particles can provide excellent versatility in embolization procedures. The aim of this article is to provide a back-to-the-basics overview of particle embolization. Here, we discuss the various microparticle types, their respective advantages and disadvantages, as well as technical considerations when using microparticles for embolization.



Publication History

Article published online:
20 July 2023

© 2023. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Karim V. Vascular and Interventional Radiology. Saunders/Elsevier: Philadelphia; 2006: 40-46
  • 2 Sheth RA, Sabir S, Krishnamurthy S. et al. Endovascular embolization by transcatheter delivery of particles: past, present, and future. J Funct Biomater 2017; 8 (02) 12
  • 3 Guimaraes M. Does Material Matter? Particulate Embolics. Endovascular Today 2013 072013:4
  • 4 Doucet J, Kiri L, O'Connell K. et al. Advances in degradable embolic microspheres: a state of the art review. J Funct Biomater 2018; 9 (01) 14
  • 5 Bilbao JI, de Luis E, García de Jalón JA. et al. Comparative study of four different spherical embolic particles in an animal model: a morphologic and histologic evaluation. J Vasc Interv Radiol 2008; 19 (11) 1625-1638
  • 6 Xiao N, Lewandowski RJ. Embolic agents: coils. Semin Intervent Radiol 2022; 39 (01) 113-118
  • 7 Medsinge A, Zajko A, Orons P, Amesur N, Santos E. A case-based approach to common embolization agents used in vascular interventional radiology. AJR Am J Roentgenol 2014; 203 (04) 699-708
  • 8 Abada HT, Golzarian J. Gelatine sponge particles: handling characteristics for endovascular use. Tech Vasc Interv Radiol 2007; 10 (04) 257-260
  • 9 Poursaid A, Jensen MM, Huo E, Ghandehari H. Polymeric materials for embolic and chemoembolic applications. J Control Release 2016; 240: 414-433
  • 10 Spies JB, Allison S, Flick P. et al. Polyvinyl alcohol particles and tris-acryl gelatin microspheres for uterine artery embolization for leiomyomas: results of a randomized comparative study. J Vasc Interv Radiol 2004; 15 (08) 793-800
  • 11 Caine M, Carugo D, Zhang X, Hill M, Dreher MR, Lewis AL. Review of the development of methods for characterization of microspheres for use in embolotherapy: translating bench to Cathlab. Adv Healthc Mater 2017;6(09):
  • 12 Cziperle DJ. Avitene™ microfibrillar collagen hemostat for adjunctive hemostasis in surgical procedures: a systematic literature review. Med Devices (Auckl) 2021; 14: 155-163
  • 13 Patetta MA, Isaacson AJ, Stewart JK. Initial experience with HydroPearl microspheres for uterine artery embolization for the treatment of symptomatic uterine fibroids. CVIR Endovasc 2021; 4 (01) 32
  • 14 Siskin GP, Dowling K, Virmani R, Jones R, Todd D. Pathologic evaluation of a spherical polyvinyl alcohol embolic agent in a porcine renal model. J Vasc Interv Radiol 2003; 14 (01) 89-98
  • 15 Lewis AL, Dreher MR, O'Byrne V. et al. DC BeadM1™: towards an optimal transcatheter hepatic tumour therapy. J Mater Sci Mater Med 2016; 27 (01) 13
  • 16 Lewis AL, Gonzalez MV, Leppard SW. et al. Doxorubicin eluting beads - 1: effects of drug loading on bead characteristics and drug distribution. J Mater Sci Mater Med 2007; 18 (09) 1691-1699
  • 17 Lopera JE. Embolization in trauma: principles and techniques. Semin Intervent Radiol 2010; 27 (01) 14-28
  • 18 Katsumori T, Kasahara T. The size of gelatin sponge particles: differences with preparation method. Cardiovasc Intervent Radiol 2006; 29 (06) 1077-1083
  • 19 Wang CY, Hu J, Sheth RA, Oklu R. Emerging embolic agents in endovascular embolization: an overview. Prog Biomed Eng (Bristol) 2020; 2 (01) 012003
  • 20 Lencioni R, de Baere T, Burrel M. et al. Transcatheter treatment of hepatocellular carcinoma with Doxorubicin-loaded DC Bead (DEBDOX): technical recommendations. Cardiovasc Intervent Radiol 2012; 35 (05) 980-985
  • 21 Jordan O, Denys A, De Baere T, Boulens N, Doelker E. Comparative study of chemoembolization loadable beads: in vitro drug release and physical properties of DC bead and hepasphere loaded with doxorubicin and irinotecan. J Vasc Interv Radiol 2010; 21 (07) 1084-1090
  • 22 Liapi E, Lee KH, Georgiades CC, Hong K, Geschwind JF. Drug-eluting particles for interventional pharmacology. Tech Vasc Interv Radiol 2007; 10 (04) 261-269
  • 23 Anderson ME, Kalva SP. Drug-eluting agents. In: Guimaraes M, Lencioni R, Siskin GP. eds. Embolization Therapy: Principles and Clinical Applications. Wolters Kluwer; 2014: 816
  • 24 Delicque J, Guiu B, Boulin M, Schwanz H, Piron L, Cassinotto C. Liver chemoembolization of hepatocellular carcinoma using TANDEM® microspheres. Future Oncol 2018; 14 (26) 2761-2772
  • 25 Lazzaro MA, Badruddin A, Zaidat OO, Darkhabani Z, Pandya DJ, Lynch JR. Endovascular embolization of head and neck tumors. Front Neurol 2011; 2: 64
  • 26 Borota L, Mahmoud E, Nyberg C, Lewén A, Enblad P, Ronne-Engström E. Dual lumen balloon catheter - an effective substitute for two single lumen catheters in treatment of vascular targets with challenging anatomy. J Clin Neurosci 2018; 51: 91-99
  • 27 Smith SJ. Uterine fibroid embolization. Am Fam Physician 2000; 61 (12) 3601-3607 , 3611–3612
  • 28 Vo NJ, Andrews RT. Uterine artery embolization: a safe and effective, minimally invasive, uterine-sparing treatment option for symptomatic fibroids. Semin Intervent Radiol 2008; 25 (03) 252-260
  • 29 Malone CD, Banerjee A, Alley MT, Vasanawala SS, Roberts AC, Hsiao A. Pelvic blood flow predicts fibroid volume and embolic required for uterine fibroid embolization: a pilot study with 4D flow MR angiography. AJR Am J Roentgenol 2018; 210 (01) 189-200
  • 30 Lubarsky M, Ray C, Funaki B. Embolization agents-which one should be used when? Part 2: small-vessel embolization. Semin Intervent Radiol 2010; 27 (01) 99-104
  • 31 Lubarsky M, Ray CE, Funaki B. Embolization agents-which one should be used when? Part 1: large-vessel embolization. Semin Intervent Radiol 2009; 26 (04) 352-357
  • 32 Ghosh A, Xiao N, Gordon AC, Funaki B, Lewandowski RJ. Embolic agents: vascular plugs. Semin Intervent Radiol 2022; 39 (05) 526-532
  • 33 Lorenz J, Sheth D, Patel J. Bronchial artery embolization. Semin Intervent Radiol 2012; 29 (03) 155-160
  • 34 Johnson CG, Tang Y, Beck A. et al. Preparation of radiopaque drug-eluting beads for transcatheter chemoembolization. J Vasc Interv Radiol 2016; 27 (01) 117-126.e3
  • 35 Dreher MR, Sharma KV, Woods DL. et al. Radiopaque drug-eluting beads for transcatheter embolotherapy: experimental study of drug penetration and coverage in swine. J Vasc Interv Radiol 2012; 23 (02) 257-64.e4