Semin Thromb Hemost
DOI: 10.1055/s-0043-1769509
Review Article

Factor XII Structure–Function Relationships

Aleksandr Shamanaev
1   Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
,
Maxim Litvak
1   Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
,
Ivan Ivanov
1   Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
,
Priyanka Srivastava
1   Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
,
Mao-Fu Sun
1   Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
,
S. Kent Dickeson
1   Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
,
Sunil Kumar
1   Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
,
Tracey Z. He
1   Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
,
David Gailani
1   Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
› Author Affiliations
Funding The authors wish to acknowledge the generous support for this work from the Ernest W. Goodpasture chair in Experimental Pathology for Translational Research, and award R35 HL140025 from the National Heart, Lung and Blood Institute.

Abstract

Factor XII (FXII), the zymogen of the protease FXIIa, contributes to pathologic processes such as bradykinin-dependent angioedema and thrombosis through its capacity to convert the homologs prekallikrein and factor XI to the proteases plasma kallikrein and factor XIa. FXII activation and FXIIa activity are enhanced when the protein binds to a surface. Here, we review recent work on the structure and enzymology of FXII with an emphasis on how they relate to pathology. FXII is a homolog of pro-hepatocyte growth factor activator (pro-HGFA). We prepared a panel of FXII molecules in which individual domains were replaced with corresponding pro-HGFA domains and tested them in FXII activation and activity assays. When in fluid phase (not surface bound), FXII and prekallikrein undergo reciprocal activation. The FXII heavy chain restricts reciprocal activation, setting limits on the rate of this process. Pro-HGFA replacements for the FXII fibronectin type 2 or kringle domains markedly accelerate reciprocal activation, indicating disruption of the normal regulatory function of the heavy chain. Surface binding also enhances FXII activation and activity. This effect is lost if the FXII first epidermal growth factor (EGF1) domain is replaced with pro-HGFA EGF1. These results suggest that FXII circulates in blood in a “closed” form that is resistant to activation. Intramolecular interactions involving the fibronectin type 2 and kringle domains maintain the closed form. FXII binding to a surface through the EGF1 domain disrupts these interactions, resulting in an open conformation that facilitates FXII activation. These observations have implications for understanding FXII contributions to diseases such as hereditary angioedema and surface-triggered thrombosis, and for developing treatments for thrombo-inflammatory disorders.



Publication History

Article published online:
05 June 2023

© 2023. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Maas C, Renné T. Coagulation factor XII in thrombosis and inflammation. Blood 2018; 131 (17) 1903-1909
  • 2 Konrath S, Mailer RK, Renné T. Mechanisms, functions and diagnostic relevance of FXII activation by foreign surfaces. Hamostaseologie 2021; 41 (06) 489-501
  • 3 Shamanaev A, Litvak M, Gailani D. Recent advances in factor XII structure and function. Curr Opin Hematol 2022; 29 (05) 233-243
  • 4 Ratnoff OD, Margolius Jr A. Hageman trait: an asymptomatic disorder of blood coagulation. Trans Assoc Am Physicians 1955; 68: 149-154
  • 5 Ratnoff OD, Colopy JE. A familial hemorrhagic trait associated with a deficiency of a clot-promoting fraction of plasma. J Clin Invest 1955G; 34 (04) 602-613
  • 6 Wright IS. The nomenclature of blood clotting factors. Can Med Assoc J 1962; 86 (08) 373-374
  • 7 Gailani D, Wheeler AP, Neff AT. Rare coagulation factor deficiencies. In: Hoffman R, Benz EJ, Silberstein LE. eds. Hematology: Basic Principles and Practice, 7th ed. Philadelphia, PA: Elsevier; 2018: 2034-2050
  • 8 Schmaier AH. The contact activation and kallikrein/kinin systems: pathophysiologic and physiologic activities. J Thromb Haemost 2016; 14 (01) 28-39
  • 9 Pryzdial ELG, Leatherdale A, Conway EM. Coagulation and complement: key innate defense participants in a seamless web. Front Immunol 2022; 13: 918775
  • 10 Nickel KF, Long AT, Fuchs TA, Butler LM, Renné T. Factor XII as a therapeutic target in thromboembolic and inflammatory diseases. Arterioscler Thromb Vasc Biol 2017; 37 (01) 13-20
  • 11 Valerieva A, Longhurst HJ. Treatment of hereditary angioedema-single or multiple pathways to the rescue. Front Allergy 2022; 3: 952233
  • 12 Craig T, Magerl M, Levy DS. et al. Prophylactic use of an anti-activated factor XII monoclonal antibody, garadacimab, for patients with C1-esterase inhibitor-deficient hereditary angioedema: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 2022; 399 (10328): 945-955
  • 13 Srivastava P, Gailani D. The rebirth of the contact pathway: a new therapeutic target. Curr Opin Hematol 2020; 27 (05) 311-319
  • 14 Fredenburgh JC, Weitz JI. New anticoagulants: moving beyond the direct oral anticoagulants. J Thromb Haemost 2021; 19 (01) 20-29
  • 15 Kluge KE, Seljeflot I, Arnesen H, Jensen T, Halvorsen S, Helseth R. Coagulation factors XI and XII as possible targets for anticoagulant therapy. Thromb Res 2022; 214: 53-62
  • 16 Long AT, Kenne E, Jung R, Fuchs TA, Renné T. Contact system revisited: an interface between inflammation, coagulation, and innate immunity. J Thromb Haemost 2016; 14 (03) 427-437
  • 17 Ivanov I, Matafonov A, Sun MF. et al. Proteolytic properties of single-chain factor XII: a mechanism for triggering contact activation. Blood 2017; 129 (11) 1527-1537
  • 18 Ivanov I, Matafonov A, Sun MF. et al. A mechanism for hereditary angioedema with normal C1 inhibitor: an inhibitory regulatory role for the factor XII heavy chain. Blood 2019; 133 (10) 1152-1163
  • 19 Zhu S, Diamond SL. Contact activation of blood coagulation on a defined kaolin/collagen surface in a microfluidic assay. Thromb Res 2014; 134 (06) 1335-1343
  • 20 Shamanaev A, Ivanov I, Sun MF. et al. Model for surface-dependent factor XII activation: the roles of factor XII heavy chain domains. Blood Adv 2022; 6 (10) 3142-3154
  • 21 Arvidsson S, Askendal A, Tengvall P. Blood plasma contact activation on silicon, titanium and aluminium. Biomaterials 2007; 28 (07) 1346-1354
  • 22 Hassanian SM, Avan A, Ardeshirylajimi A. Inorganic polyphosphate: a key modulator of inflammation. J Thromb Haemost 2017; 15 (02) 213-218
  • 23 Baker CJ, Smith SA, Morrissey JH. Polyphosphate in thrombosis, hemostasis, and inflammation. Res Pract Thromb Haemost 2018; 3 (01) 18-25
  • 24 Wang Y, Ivanov I, Smith SA, Gailani D, Morrissey JH. Polyphosphate, Zn2+ and high molecular weight kininogen modulate individual reactions of the contact pathway of blood clotting. J Thromb Haemost 2019; 17 (12) 2131-2140
  • 25 Kannemeier C, Shibamiya A, Nakazawa F. et al. Extracellular RNA constitutes a natural procoagulant cofactor in blood coagulation. Proc Natl Acad Sci U S A 2007; 104 (15) 6388-6393
  • 26 Vu TT, Leslie BA, Stafford AR, Zhou J, Fredenburgh JC, Weitz JI. Histidine-rich glycoprotein binds DNA and RNA and attenuates their capacity to activate the intrinsic coagulation pathway. Thromb Haemost 2016; 115 (01) 89-98
  • 27 Ivanov I, Shakhawat R, Sun MF. et al. Nucleic acids as cofactors for factor XI and prekallikrein activation: different roles for high-molecular-weight kininogen. Thromb Haemost 2017; 117 (04) 671-681
  • 28 Gajsiewicz JM, Smith SA, Morrissey JH. Polyphosphate and RNA differentially modulate the contact pathway of blood clotting. J Biol Chem 2017; 292 (05) 1808-1814
  • 29 Lin L, Xu L, Xiao C. et al. Plasma contact activation by a fucosylated chondroitin sulfate and its structure-activity relationship study. Glycobiology 2018; 28 (10) 754-764
  • 30 Oschatz C, Maas C, Lecher B. et al. Mast cells increase vascular permeability by heparin-initiated bradykinin formation in vivo. Immunity 2011; 34 (02) 258-268
  • 31 Ponczek MB. High molecular weight kininogen: a review of the structural literature. Int J Mol Sci 2021; 22 (24) 13370
  • 32 Favier B, Bicout DJ, Baroso R, Paclet MH, Drouet C. In vitro reconstitution of kallikrein-kinin system and progress curve analysis. Biosci Rep 2022; 42 (10) BSR20221081
  • 33 Singh PK, Chen ZL, Horn K, Norris EH. Blocking domain 6 of high molecular weight kininogen to understand intrinsic clotting mechanisms. Res Pract Thromb Haemost 2022; 6 (07) e12815
  • 34 Chen ZL, Singh PK, Horn K, Strickland S, Norris EH. Anti-HK antibody reveals critical roles of a 20-residue HK region for Aβ-induced plasma contact system activation. Blood Adv 2022; 6 (10) 3090-3101
  • 35 Moellmer SA, Puy C, McCarty OJT. HK is the apple of FXI's eye. J Thromb Haemost 2022; 20 (11) 2485-2487
  • 36 Revenko AS, Gao D, Crosby JR. et al. Selective depletion of plasma prekallikrein or coagulation factor XII inhibits thrombosis in mice without increased risk of bleeding. Blood 2011; 118 (19) 5302-5311
  • 37 Iwaki T, Castellino FJ. Plasma levels of bradykinin are suppressed in factor XII-deficient mice. Thromb Haemost 2006; 95 (06) 1003-1010
  • 38 Bekassy Z, Lopatko Fagerström I, Bader M, Karpman D. Crosstalk between the renin-angiotensin, complement and kallikrein-kinin systems in inflammation. Nat Rev Immunol 2022l; 22 (07) 411-428
  • 39 Girolami JP, Bouby N, Richer-Giudicelli C, Alhenc-Gelas F. Kinins and kinin receptors in cardiovascular and renal diseases. Pharmaceuticals (Basel) 2021; 14 (03) 240
  • 40 Hamid S, Rhaleb IA, Kassem KM, Rhaleb NE. Role of kinins in hypertension and heart failure. Pharmaceuticals (Basel) 2020; 13 (11) 347
  • 41 Xie Z, Li Z, Shao Y, Liao C. Discovery and development of plasma kallikrein inhibitors for multiple diseases. Eur J Med Chem 2020; 190: 112137
  • 42 Santacroce R, D'Andrea G, Maffione AB, Margaglione M, d'Apolito M. The genetics of hereditary angioedema: a review. J Clin Med 2021; 10 (09) 2023
  • 43 Zafra H. Hereditary angioedema: a review. WMJ 2022; 121 (01) 48-53
  • 44 Kaplan AP, Joseph K, Ghebrehiwet B. The complex role of kininogens in hereditary angioedema. Front Allergy 2022; 3: 952753
  • 45 Jaffer IH, Fredenburgh JC, Hirsh J, Weitz JI. Medical device-induced thrombosis: what causes it and how can we prevent it?. J Thromb Haemost 2015; 13 (Suppl. 01) S72-S81
  • 46 Tillman B, Gailani D. Inhibition of factors XI and XII for prevention of thrombosis induced by artificial surfaces. Semin Thromb Hemost 2018; 44 (01) 60-69
  • 47 Visser M, Heitmeier S, Ten Cate H, Spronk HMH. Role of factor XIa and plasma kallikrein in arterial and venous thrombosis. Thromb Haemost 2020; 120 (06) 883-993
  • 48 Anderson J, Maina N. Reviewing clinical considerations and guideline recommendations of C1 inhibitor prophylaxis for hereditary angioedema. Clin Transl Allergy 2022; 12 (01) e12092
  • 49 Visser M, van Oerle R, Ten Cate H. et al. Plasma kallikrein contributes to coagulation in the absence of factor XI by activating Factor IX. Arterioscler Thromb Vasc Biol 2020; 40 (01) 103-111
  • 50 Noubouossie DF, Henderson MW, Mooberry M. et al. Red blood cell microvesicles activate the contact system, leading to factor IX activation via 2 independent pathways. Blood 2020; 135 (10) 755-765
  • 51 Kearney KJ, Butler J, Posada OM. et al. Kallikrein directly interacts with and activates Factor IX, resulting in thrombin generation and fibrin formation independent of Factor XI. Proc Natl Acad Sci U S A 2021; 118 (03) e2014810118
  • 52 Ponczek MB, Shamanaev A, LaPlace A. et al. The evolution of factor XI and the kallikrein-kinin system. Blood Adv 2020; 4 (24) 6135-6147
  • 53 de Maat S, Maas C. Factor XII: form determines function. J Thromb Haemost 2016; 14 (08) 1498-1506
  • 54 Frunt R, El Otmani H, Gibril Kaira B, de Maat S, Maas C. Factor XII explored with AlphaFold - opportunities for selective drug development. Thromb Haemost 2023; 123 (02) 177-185
  • 55 Naudin C, Burillo E, Blankenberg S, Butler L, Renné T. Factor XII contact activation. Semin Thromb Hemost 2017; 43 (08) 814-826
  • 56 Renné T, Stavrou EX. Roles of factor XII in innate immunity. Front Immunol 2019; 10: 2011
  • 57 Cool DE, Edgell CJ, Louie GV, Zoller MJ, Brayer GD, MacGillivray RT. Characterization of human blood coagulation factor XII cDNA. Prediction of the primary structure of factor XII and the tertiary structure of beta-factor XIIa. J Biol Chem 1985; 260 (25) 13666-13676
  • 58 Colman RW, Schmaier AH. Contact system: a vascular biology modulator with anticoagulant, profibrinolytic, antiadhesive, and proinflammatory attributes. Blood 1997; 90 (10) 3819-3843
  • 59 Pathak M, Wilmann P, Awford J. et al. Coagulation factor XII protease domain crystal structure. J Thromb Haemost 2015; 13 (04) 580-591
  • 60 Dementiev A, Silva A, Yee C. et al. Structures of human plasma β-factor XIIa cocrystallized with potent inhibitors. Blood Adv 2018; 2 (05) 549-558
  • 61 Pathak M, Manna R, Li C. et al. Crystal structures of the recombinant β-factor XIIa protease with bound Thr-Arg and Pro-Arg substrate mimetics. Acta Crystallogr D Struct Biol 2019; 75 (Pt 6): 578-591
  • 62 Beringer DX, Kroon-Batenburg LM. The structure of the FnI-EGF-like tandem domain of coagulation factor XII solved using SIRAS. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69 (Pt 2): 94-102
  • 63 Kaira BG, Slater A, McCrae KR. et al. Factor XII and kininogen asymmetric assembly with gC1qR/C1QBP/P32 is governed by allostery. Blood 2020; 136 (14) 1685-1697
  • 64 Emsely J, Saleem M, Li C, Phillipous H. Factor XII heavy chain structure [abstract]. Accessed December 12, 2022 at: https://abstracts.isth.org/factor-xii-heavy-chain-structure/
  • 65 David A, Islam S, Tankhilevich E, Sternberg MJE. The AlphaFold database of protein structures: a biologist's guide. J Mol Biol 2022; 434 (02) 167336
  • 66 Ponczek MB, Gailani D, Doolittle RF. Evolution of the contact phase of vertebrate blood coagulation. J Thromb Haemost 2008; 6 (11) 1876-1883
  • 67 Miyazawa K, Shimomura T, Kitamura A, Kondo J, Morimoto Y, Kitamura N. Molecular cloning and sequence analysis of the cDNA for a human serine protease responsible for activation of hepatocyte growth factor. Structural similarity of the protease precursor to blood coagulation factor XII. J Biol Chem 1993; 268 (14) 10024-10028
  • 68 Huelsmann M, Hecker N, Springer MS, Gatesy J, Sharma V, Hiller M. Genes lost during the transition from land to water in cetaceans highlight genomic changes associated with aquatic adaptations. Sci Adv 2019; 5 (09) eaaw6671
  • 69 Cooley BC. The dirty side of the intrinsic pathway of coagulation. Thromb Res 2016; 145: 159-160
  • 70 Juang LJ, Mazinani N, Novakowski SK. et al. Coagulation factor XII contributes to hemostasis when activated by soil in wounds. Blood Adv 2020; 4 (08) 1737-1745
  • 71 Ivanov I, Verhamme IM, Sun MF. et al. Protease activity in single-chain prekallikrein. Blood 2020; 135 (08) 558-567
  • 72 Renatus M, Engh RA, Stubbs MT. et al. Lysine 156 promotes the anomalous proenzyme activity of tPA: X-ray crystal structure of single-chain human tPA. EMBO J 1997; 16 (16) 4797-4805
  • 73 Shamanaev A, Emsley J, Gailani D. Proteolytic activity of contact factor zymogens. J Thromb Haemost 2021; 19 (02) 330-341
  • 74 Karnaukhova E. C1-inhibitor: structure, functional diversity and therapeutic Development. Curr Med Chem 2022; 29 (03) 467-488
  • 75 de Maat S, Joseph K, Maas C, Kaplan AP. Blood clotting and the pathogenesis of types i and ii hereditary angioedema. Clin Rev Allergy Immunol 2021; 60 (03) 348-356
  • 76 Kaplan AP. Hereditary angioedema: investigational therapies and future research. Allergy Asthma Proc 2020; 41 (6, Suppl 1): S51-S54
  • 77 Sharma J, Jindal AK, Banday AZ. et al. Pathophysiology of hereditary angioedema (HAE) beyond the SERPING1 gene. Clin Rev Allergy Immunol 2021; 60 (03) 305-315
  • 78 Bork K, Machnig T, Wulff K, Witzke G, Prusty S, Hardt J. Clinical features of genetically characterized types of hereditary angioedema with normal C1 inhibitor: a systematic review of qualitative evidence. Orphanet J Rare Dis 2020; 15 (01) 289
  • 79 Veronez CL, Csuka D, Sheikh FR, Zuraw BL, Farkas H, Bork K. The expanding spectrum of mutations in hereditary angioedema. J Allergy Clin Immunol Pract 2021; 9 (06) 2229-2234
  • 80 Dewald G, Bork K. Missense mutations in the coagulation factor XII (Hageman factor) gene in hereditary angioedema with normal C1 inhibitor. Biochem Biophys Res Commun 2006; 343 (04) 1286-1289
  • 81 Bork K, Wulff K, Meinke P, Wagner N, Hardt J, Witzke G. A novel mutation in the coagulation factor 12 gene in subjects with hereditary angioedema and normal C1-inhibitor. Clin Immunol 2011; 141 (01) 31-35
  • 82 de Maat S, Björkqvist J, Suffritti C. et al. Plasmin is a natural trigger for bradykinin production in patients with hereditary angioedema with factor XII mutations. J Allergy Clin Immunol 2016; 138 (05) 1414-1423.e9
  • 83 Engelter ST, Fluri F, Buitrago-Téllez C. et al. Life-threatening orolingual angioedema during thrombolysis in acute ischemic stroke. J Neurol 2005; 252 (10) 1167-1170
  • 84 Brown E, Campana C, Zimmerman J, Brooks S. Icatibant for the treatment of orolingual angioedema following the administration of tissue plasminogen activator. Am J Emerg Med 2018; 36 (06) 1125.e1-1125.e2
  • 85 Ewald GA, Eisenberg PR. Plasmin-mediated activation of contact system in response to pharmacological thrombolysis. Circulation 1995; 91 (01) 28-36
  • 86 de Maat S, Clark CC, Boertien M. et al. Factor XII truncation accelerates activation in solution. J Thromb Haemost 2019; 17 (01) 183-194
  • 87 Zamolodchikov D, Bai Y, Tang Y, McWhirter JR, Macdonald LE, Alessandri-Haber N. A short isoform of coagulation factor XII mRNA is expressed by neurons in the human brain. Neuroscience 2019; 413: 294-307
  • 88 Law RH, Caradoc-Davies T, Cowieson N. et al. The X-ray crystal structure of full-length human plasminogen. Cell Rep 2012; 1 (03) 185-190
  • 89 Law RH, Abu-Ssaydeh D, Whisstock JC. New insights into the structure and function of the plasminogen/plasmin system. Curr Opin Struct Biol 2013; 23 (06) 836-841
  • 90 Hofman ZLM, Clark CC, Sanrattana W. et al. A mutation in the kringle domain of human factor XII that causes autoinflammation, disturbs zymogen quiescence, and accelerates activation. J Biol Chem 2020; 295 (02) 363-374
  • 91 Scheffel J, Mahnke NA, Hofman ZLM. et al. Cold-induced urticarial autoinflammatory syndrome related to factor XII activation. Nat Commun 2020; 11 (01) 179
  • 92 Müller F, Mutch NJ, Schenk WA. et al. Platelet polyphosphates are proinflammatory and procoagulant mediators in vivo. Cell 2009; 139 (06) 1143-1156
  • 93 Samuel M, Pixley RA, Villanueva MA, Colman RW, Villanueva GB. Human factor XII (Hageman factor) autoactivation by dextran sulfate. Circular dichroism, fluorescence, and ultraviolet difference spectroscopic studies. J Biol Chem 1992; 267 (27) 19691-19697
  • 94 Revak SD, Cochrane CG, Johnston AR, Hugli TE. Structural changes accompanying enzymatic activation of human Hageman factor. J Clin Invest 1974; 54 (03) 619-627
  • 95 Revak SD, Cochrane CG. The relationship of structure and function in human Hageman factor. The association of enzymatic and binding activities with separate regions of the molecule. J Clin Invest 1976; 57 (04) 852-860
  • 96 Pixley RA, Stumpo LG, Birkmeyer K, Silver L, Colman RW. A monoclonal antibody recognizing an icosapeptide sequence in the heavy chain of human factor XII inhibits surface-catalyzed activation. J Biol Chem 1987; 262 (21) 10140-10145
  • 97 Citarella F, Ravon DM, Pascucci B, Felici A, Fantoni A, Hack CE. Structure/function analysis of human factor XII using recombinant deletion mutants. Evidence for an additional region involved in the binding to negatively charged surfaces. Eur J Biochem 1996; 238 (01) 240-249
  • 98 Røjkaer R, Schousboe I. Partial identification of the Zn2+-binding sites in factor XII and its activation derivatives. Eur J Biochem 1997; 247 (02) 491-496
  • 99 Citarella F, te Velthuis H, Helmer-Citterich M, Hack CE. Identification of a putative binding site for negatively charged surfaces in the fibronectin type II domain of human factor XII – an immunochemical and homology modeling approach. Thromb Haemost 2000; 84 (06) 1057-1065
  • 100 Clark CC, Hofman ZLM, Sanrattana W, den Braven L, de Maat S, Maas C. The fibronectin type II domain of factor XII ensures zymogen quiescence. Thromb Haemost 2020; 120 (03) 400-411
  • 101 Nuijens JH, Huijbregts CC, Eerenberg-Belmer AJ, Meijers JC, Bouma BN, Hack CE. Activation of the contact system of coagulation by a monoclonal antibody directed against a neodeterminant in the heavy chain region of human coagulation factor XII (Hageman factor). J Biol Chem 1989; 264 (22) 12941-12949
  • 102 Ravon DM, Citarella F, Lubbers YT, Pascucci B, Hack CE. Monoclonal antibody F1 binds to the kringle domain of factor XII and induces enhanced susceptibility for cleavage by kallikrein. Blood 1995; 86 (11) 4134-4143
  • 103 Heestermans M, Naudin C, Mailer RK. et al. Identification of the factor XII contact activation site enables sensitive coagulation diagnostics. Nat Commun 2021; 12 (01) 5596
  • 104 Kohs TCL, Lorentz CU, Johnson J. et al. Development of coagulation factor XII antibodies for inhibiting vascular device-related thrombosis. Cell Mol Bioeng 2020; 14 (02) 161-175
  • 105 Shamanaev A, Litvak M, Cheng Q. et al. A site on factor XII required for productive interactions with polyphosphate. J Thromb Haemost 2023; 21 (06) 1567-1579
  • 106 Dickeson SK, Kumar S, Sun MF. et al. A mechanism for hereditary angioedema caused by a lysine 311-to-glutamic acid substitution in plasminogen. Blood 2022; 139 (18) 2816-2829
  • 107 Pozzi N, Chen Z, Zapata F, Pelc LA, Barranco-Medina S, Di Cera E. Crystal structures of prethrombin-2 reveal alternative conformations under identical solution conditions and the mechanism of zymogen activation. Biochemistry 2011; 50 (47) 10195-10202
  • 108 Litvak M, Shamanaev A, Zalawadiya S. et al. Titanium is a potent inducer of contact activation: implications for intravascular devices. J Thromb Haemost 2023; 21 (05) 1200-1213
  • 109 Mahdi F, Madar ZS, Figueroa CD, Schmaier AH. Factor XII interacts with the multiprotein assembly of urokinase plasminogen activator receptor, gC1qR, and cytokeratin 1 on endothelial cell membranes. Blood 2002; 99 (10) 3585-3596
  • 110 Matafonov A, Leung PY, Gailani AE. et al. Factor XII inhibition reduces thrombus formation in a primate thrombosis model. Blood 2014; 123 (11) 1739-1746
  • 111 Grover SP, Kawano T, Wan J. et al. C1 inhibitor deficiency enhances contact pathway mediated activation of coagulation and venous thrombosis. Blood 2023; 141 (19) 2390-2401
  • 112 Gailani D. Hereditary angioedema and thrombosis. Blood 2023; 141 (19) 2295-2297
  • 113 Baird TR, Walsh PN. The interaction of factor XIa with activated platelets but not endothelial cells promotes the activation of factor IX in the consolidation phase of blood coagulation. J Biol Chem 2002; 277 (41) 38462-38467
  • 114 Mahdi F, Shariat-Madar Z, Schmaier AH. The relative priority of prekallikrein and factors XI/XIa assembly on cultured endothelial cells. J Biol Chem 2003; 278 (45) 43983-43990
  • 115 Rangaswamy C, Englert H, Deppermann C, Renné T. Polyanions in coagulation and thrombosis: focus on polyphosphate and neutrophils extracellular traps. Thromb Haemost 2021; 121 (08) 1021-1030