CC BY-NC-ND 4.0 · Yearb Med Inform 2023; 32(01): 215-224
DOI: 10.1055/s-0043-1768735
Section 9: Knowledge Representation and Management
Survey

Advancing Biomedicine with Graph Representation Learning: Recent Progress, Challenges, and Future Directions

Fang Li
McWilliams School of Biomedical Informatics, the University of Texas Health Science Center at Houston, Houston, TX, USA
,
Yi Nian
McWilliams School of Biomedical Informatics, the University of Texas Health Science Center at Houston, Houston, TX, USA
,
Zenan Sun
McWilliams School of Biomedical Informatics, the University of Texas Health Science Center at Houston, Houston, TX, USA
,
Cui Tao
McWilliams School of Biomedical Informatics, the University of Texas Health Science Center at Houston, Houston, TX, USA
› Author Affiliations

Summary

Objectives: Graph representation learning (GRL) has emerged as a pivotal field that has contributed significantly to breakthroughs in various fields, including biomedicine. The objective of this survey is to review the latest advancements in GRL methods and their applications in the biomedical field. We also highlight key challenges currently faced by GRL and outline potential directions for future research.

Methods: We conducted a comprehensive search of multiple databases, including PubMed, Web of Science, IEEE Xplore, and Google Scholar, to collect relevant publications from the past two years (2021-2022). The studies selected for review were based on their relevance to the topic and the publication quality.

Results: A total of 78 articles were included in our analysis. We identified three main categories of GRL methods and summarized their methodological foundations and notable models. In terms of GRL applications, we focused on two main topics: drug and disease. We analyzed the study frameworks and achievements of the prominent research. Based on the current state-of-the-art, we discussed the challenges and future directions.

Conclusions: GRL methods applied in the biomedical field demonstrated several key characteristics, including the utilization of attention mechanisms to prioritize relevant features, a growing emphasis on model interpretability, and the combination of various techniques to improve model performance. There are also challenges needed to be addressed, including mitigating model bias, accommodating the heterogeneity of large-scale knowledge graphs, and improving the availability of high-quality graph data. To fully leverage the potential of GRL, future efforts should prioritize these areas of research.



Publication History

Article published online:
26 December 2023

© 2023. IMIA and Thieme. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Santos A, Colaço AR, Nielsen AB, Niu L, Strauss M, Geyer PE, et al. A knowledge graph to interpret clinical proteomics data. Nat Biotechnol 2022;40(5):692–702. doi: 10.1038/s41587-021-01145-6.
  • 2 Zhou J, Cui G, Hu S, Zhang Z, Yang C, Liu Z, et al. Graph neural networks: A review of methods and applications. AI Open 2020;1:57–81. doi: 10.1016/j.aiopen.2021.01.001.
  • 3 Yi H-C, You Z-H, Huang D-S, Kwoh CK. Graph representation learning in bioinformatics: trends, methods and applications. Brief Bioinform 2022;23(1):1–16. doi: 10.1093/bib/bbab340.
  • 4 Leser U, Triβl S. Graph Management in the Life Sciences. In: Liu L, Özsu MT, editors. Encyclopedia of Database Systems. Springer US; 2009. p. 1266–71. doi: 10.1007/978-0-387-39940-9_1436.
  • 5 David L, Thakkar A, Mercado R, Engkvist O. Molecular representations in AI-driven drug discovery: a review and practical guide. J Cheminform 2020;12(1):56. doi: 10.1186/s13321-020-00460-5.
  • 6 Weighill D, Guebila MB, Lopes-Ramos C, Glass K, Quackenbush J, Platig J, et al. Gene regulatory network inference as relaxed graph matching. Proc Conf AAAI Artif Intell 2021;35:10263–72. doi: 10.1101/168419.
  • 7 Khan A, Uddin S, Srinivasan U. Comorbidity network for chronic disease: A novel approach to understand type 2 diabetes progression. Int J Med Inform 2018;115:1–9. doi: 10.1016/j.ijmedinf.2018.04.001.
  • 8 Gómez A, Oliveira G. New approaches to epidemic modeling on networks. Sci Rep 2023;13(1):468. doi: 10.1038/s41598-022-19827-9.
  • 9 Britto MT, Fuller SC, Kaplan HC, Kotagal U, Lannon C, Margolis PA, et al. Using a network organisational architecture to support the development of Learning Healthcare Systems. BMJ Qual Saf 2018;27(11):937–46. doi: 10.1136/bmjqs-2017-007219.
  • 10 Chandak P, Huang K, Zitnik M. Building a knowledge graph to enable precision medicine. Sci Data 2023;10(1):67. doi: 10.1038/s41597-023-01960-3.
  • 11 Ji S, Pan S, Cambria E, Marttinen P, Yu PS. A Survey on Knowledge Graphs: Representation, Acquisition, and Applications. IEEE Trans Neural Netw Learn Syst 2022; 33:494–514. doi: 10.1109/tnnls.2021.3070843.
  • 12 Cai L, Lu C, Xu J, Meng Y, Wang P, Fu X, et al. Drug repositioning based on the heterogeneous information fusion graph convolutional network. Brief Bioinform 2021;22(6):1–12. doi: 10.1093/bib/bbab319.
  • 13 Sun Z, Yin H, Chen H, Chen T, Cui L, Yang F. Disease Prediction via Graph Neural Networks. IEEE J Biomed Health Inform 2021;25(3):818–26. doi: 10.1109/JBHI.2020.3004143.
  • 14 Yuan Q, Chen J, Zhao H, Zhou Y, Yang Y. Structure-aware protein–protein interaction site prediction using deep graph convolutional network. Bioinformatics 2021;38(1):125–32. doi: 10.1093/bioinformatics/btab643.
  • 15 Aggarwal R, Sounderajah V, Martin G, Ting DSW, Karthikesalingam A, King D, et al. Diagnostic accuracy of deep learning in medical imaging: a systematic review and meta-analysis. NPJ Digit Med 2021; 4(1): 65. doi: 10.1038/s41746-021-00438-z.
  • 16 Askr H, Elgeldawi E, Aboul Ella H, Elshaier YAMM, Gomaa MM, Hassanien AE. Deep learning in drug discovery: an integrative review and future challenges. Artif Intell Rev 2022;1–63. doi: 10.1007/s10462-022-10306-1.
  • 17 Zhang G, Zhang X, Bilal M, Dou W, Xu X, Rodrigues JJPC. Identifying fraud in medical insurance based on blockchain and deep learning. Future Gener Comput Syst 2022;130:140–54. doi: 10.1016/j.future.2021.12.006.
  • 18 Singh PK. Data with Non-Euclidean Geometry and its Characterization. Journal of Artificial Intelligence and Technology 2021;2(1):3–8. doi: 10.37965/jait.2021.12001.
  • 19 Hamilton WL, Ying R, Leskovec J. Representation Learning on Graphs: Methods and Applications. Bull Tech Comm Data Eng 2017;40(3):52–74.
  • 20 Hetzel L, Fischer DS, Günnemann S, Theis FJ. Graph representation learning for single-cell biology. Curr Opin Syst Biol 2021;28:100347. doi: 10.1016/j.coisb.2021.05.008.
  • 21 Pham T-H, Qiu Y, Zeng J, Xie L, Zhang P. A deep learning framework for high-throughput mechanism-driven phenotype compound screening and its application to COVID-19 drug repurposing. Nat Mach Intell 2021;3(3):247–57. doi: 10.1038/s42256-020-00285-9.
  • 22 Li L, Zhou J, Jiang Y, Huang B. Propagation source identification of infectious diseases with graph convolutional networks. J Biomed Inform 2021;116:103720. doi: 10.1016/j.jbi.2021.103720.
  • 23 Zhu W, Razavian N. Variationally regularized graph-based representation learning for electronic health records. Proc ACM Conf Health Inference Learn 2021:1–13. doi: 10.1145/3450439.3451855.
  • 24 Wu L, Cui P, Pei J, Zhao L, Song L. Graph Neural Networks: Foundations, Frontiers, and Applications. Singarpore: Springer Nature; 2022. doi: 10.1007/978-981-16-6054-2.
  • 25 Yang Z, Cohen WW, Salakhutdinov R. Revisiting semi-supervised learning with graph embeddings. Proceedings of the 33rd International Conference on International Conference on Machine Learning 2016;48:40–8.
  • 26 Hamilton WL. Graph Representation Learning. Synthesis Lectures on Artificial Intelligence and Machine Learning. Cham: Springer; 2020. doi: 10.1007/978-3-031-01588-5.
  • 27 Li MM, Huang K, Zitnik M. Graph representation learning in biomedicine and healthcare. Nat Biomed Eng 2022; 6(12):1353-69. doi: 10.1038/s41551-022-00942-x.
  • 28 Perozzi B, Al-Rfou R, Skiena S. DeepWalk: Online Learning of Social Representations. KDD 2014;701–10. doi: 10.1145/2623330.2623732.
  • 29 Grover A, Leskovec J. node2vec: Scalable Feature Learning for Networks. KDD 2016;855–64. doi: 10.1145/2939672.2939754.
  • 30 Ribeiro LFR, Savarese PHP, Figueiredo DR. struc2vec: Learning Node Representations from Structural Identity. KDD 2017;385–94. doi: 10.1145/3097983.3098061.
  • 31 Tang J, Qu M, Wang M, Zhang M, Yan J, Mei Q. LINE: Large-scale Information Network Embedding. Proceedings of the 24th International Conference on World Wide Web 2015;1067–77. doi: 10.1145/2736277.2741093.
  • 32 Hamilton WL, Ying R, Leskovec J. Inductive representation learning on large graphs. Proceedings of the 31st International Conference on Neural Information Processing Systems 2017:1025–35. doi: 10.5555/3294771.3294869.
  • 33 Chami I, Abu-El-Haija S, Perozzi B, Ré C, Murphy K. Machine learning on graphs: A model and comprehensive taxonomy. J Mach Learn Res 2022;(89):1-64.
  • 34 Morris C, Ritzert M, Fey M, Hamilton WL, Lenssen JE, Rattan G, et al. Weisfeiler and Leman Go Neural: Higher-Order Graph Neural Networks. Proc AAAI Conf Artif Intell 2019;33(1):4602–9. doi: 10.1609/aaai.v33i01.33014602.
  • 35 Alzubaidi L, Zhang J, Humaidi AJ, Al-Dujaili A, Duan Y, Al-Shamma O, et al. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J Big Data 2021;8(1):53. doi: 10.1186/s40537-021-00444-8.
  • 36 Zhao Z-Q, Zheng P, Xu S-T, Wu X. Object Detection With Deep Learning: A Review. IEEE Trans Neural Netw Learn Syst 2019;30(11):3212–32. doi: 10.1109/TNNLS.2018.2876865.
  • 37 Yao G, Lei T, Zhong J. A review of Convolutional-Neural-Network-based action recognition. Pattern Recognit Lett 2019;118:14–22. doi: 10.1016/j.patrec.2018.05.018.
  • 38 Ker J, Wang L, Rao J, Lim T. Deep Learning Applications in Medical Image Analysis. IEEE Access 2018;6:9375–9389. doi: 10.1109/ACCESS.2017.2788044.
  • 39 Shuman DI, Narang SK, Frossard P, Ortega A, Vandergheynst P. The Emerging Field of Signal Processing on Graphs: Extending High-Dimensional Data Analysis to Networks and Other Irregular Domains. IEEE Signal Process Mag 2013;30(3):83-98. doi: 10.1109/MSP.2012.2235192.
  • 40 Kipf TN, Welling M. Semi-supervised classification with graph convolutional networks. Proceedings of the 5th International Conference on Learning Representations 2017.
  • 41 Zheng Y, Gao C, Chen L, Jin D, Li Y. DGCN: Diversified Recommendation with Graph Convolutional Networks. Proceedings of the Web Conference 2021;401–12. doi: 10.1145/3442381.3449835.
  • 42 Chiang W-L, Liu X, Si S, Li Y, Bengio S, Hsieh C-J. Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks. KDD 2019;257–66. doi: 10.1145/3292500.3330925.
  • 43 Li Y, Yu R, Shahabi C, Liu Y. Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting. Proceedings of the 6th International Conference on Learning Representations 2018.
  • 44 Monti F, Boscaini D, Masci J, Rodolà E, Svoboda J, Bronstein MM. Geometric deep learning on graphs and manifolds using mixture model CNNs. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit 2017;5425–34. doi: 10.1109/CVPR.2017.576.
  • 45 Veličković P, Cucurull G, Casanova A, Romero A, Liò P, Bengio Y. Graph Attention Networks. Proceedings of the 6th International Conference on Learning Representations 2018.
  • 46 Tai KS, Socher R, Manning CD. Improved Semantic Representations from Tree-Structured Long Short-Term Memory Networks. Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing 2015;1556–66. doi: 10.3115/v1/p15-1150.
  • 47 Li Y, Zemel R, Brockschmidt M, Tarlow D. Gated graph sequence neural networks. Proceedings of the 4th International Conference on Learning Representations 2016.
  • 48 Peng N, Poon H, Quirk C, Toutanova K, Yih W. Cross-Sentence N-ary Relation Extraction with Graph LSTMs. Trans Assoc Comput Linguist 2017;5:101–15. doi: 10.1162/tacl_a_00049.
  • 49 Kingma DP, Welling M. Auto-Encoding Variational Bayes; 2013. doi: 10.48550/arxiv.1312.6114.
  • 50 Kipf TN, Welling M. Variational Graph Auto-Encoders. Proceedings of the NIPS Workshop on Bayesian Deep Learning 2016.
  • 51 Simonovsky M, Komodakis N. GraphVAE: Towards Generation of Small Graphs Using Variational Autoencoders. Proceedings of the International Conference on Artificial Neural Networks 2018;11139:412–22. doi: 10.1007/978-3-030-01418-6_41.
  • 52 Jin W, Barzilay R, Jaakkola T. Junction Tree Variational Autoencoder for Molecular Graph Generation. Proceedings of the International Conference on Machine Learning 2018;2323–32.
  • 53 Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. Generative adversarial networks. Communications of the ACM 2020;63(11):139–44. doi: 10.1145/3422622.
  • 54 Wang H, Wang J, Wang J, Zhao M, Zhang W, Zhang F, et al. GraphGAN: Graph Representation Learning With Generative Adversarial Nets. Proc AAAI Conf Artif Intell 2018;32(1). doi: 10.1609/aaai.v32i1.11872.
  • 55 Nicola De Cao, Kipf T. MolGAN: An implicit generative model for small molecular graphs. Proceedings of the ICML Workshop on Theoretical Foundations and Applications of Deep Generative Models 2018.
  • 56 Anand N, Huang P. Generative modeling for protein structures. Proceedings of the 32nd Conference on Neural Information Processing Systems 2018.
  • 57 Guo X, Zhao L. A Systematic Survey on Deep Generative Models for Graph Generation. IEEE Trans Pattern Anal Mach Intell 2023;45(5):5370-90 doi: 10.1109/TPAMI.2022.3214832.
  • 58 Park K. A review of computational drug repurposing. Transl Clin Pharmacol 2019;27:59–63. doi: 10.12793/tcp.2019.27.2.59.
  • 59 Su C, Hou Y, Wang F. GNN-based Biomedical Knowledge Graph Mining in Drug Development. Graph Neural Networks: Foundations, Frontiers, and Applications 2022;517–40. doi: 10.1007/978-981-16-6054-2_24.
  • 60 Santos R, Ursu O, Gaulton A, Bento AP, Donadi RS, Bologa CG, et al. A comprehensive map of molecular drug targets. Nat Rev Drug Discov 2017;16:19–34. doi: 10.1038/nrd.2016.230.
  • 61 Peng J, Cao H, Guan J, Jingyi Jessica Li, Han R, Hao J, et al. An end-to-end heterogeneous graph representation learning-based framework for drug–target interaction prediction. Brief Bioinform 2021;22(5):1–9. doi: 10.1093/bib/bbaa430.
  • 62 Li Y, Qiao G, Wang K, Wang G. Drug–target interaction predication via multi-channel graph neural networks. Brief Bioinform 2021;23(1):bbab346. doi: 10.1093/bib/bbab346.
  • 63 Xuan P, Fan M, Cui H, Zhang T, Nakaguchi T. GVDTI: graph convolutional and variational autoencoders with attribute-level attention for drug–protein interaction prediction. Brief Bioinform 2021;23(1):bbab453. doi: 10.1093/bib/bbab453.
  • 64 Hsieh K, Wang Y, Chen L, Zhao Z, Savitz S, Jiang X, et al. Drug repurposing for COVID-19 using graph neural network and harmonizing multiple evidence. Sci Rep 2021;11:23179. doi: 10.1038/s41598-021-02353-5.
  • 65 Ding Y, Jiang X, Kim Y. Relational graph convolutional networks for predicting blood–brain barrier penetration of drug molecules. Bioinformatics 2022;38(10):2826–31. doi: 10.1093/bioinformatics/btac211.
  • 66 Yang J, Li Z, Wu WKK, Yu S, Xu Z, Chu Q, et al. Deep learning identifies explainable reasoning paths of mechanism of action for drug repurposing from multilayer biological network. Brief Bioinform 2022;23(6):bbac469. doi: 10.1093/bib/bbac469.
  • 67 Nian Y, Hu X, Zhang R, Feng J, Du J, Li F, et al. Mining on Alzheimer's diseases related knowledge graph to identity potential AD-related semantic triples for drug repurposing. BMC Bioinformatics 2022;23:407. doi: 10.1186/s12859-022-04934-1.
  • 68 Bordes A, Usunier N, Garcia-Duran A, Weston J, Yakhnenko O. Translating Embeddings for Modeling multi-relational Data. Proceedings of the 26th Conference on Neural Information Processing Systems 2013.
  • 69 Yang B, Yih W, He X, Gao J, Deng L. Embedding Entities and Relations for Learning and Inference in Knowledge Bases. Proceedings of the 3rd International Conference on Learning Representations 2015.
  • 70 Trouillon T, Welbl J, Riedel S, Gaussier E, Bouchard G. Complex Embeddings for Simple Link Prediction. Proceedings of the 33rd International Conference on Machine Learning 2016;48:2071–80.
  • 71 Drug Synergism [Internet]. clinicalinfo.hiv.gov. Available from: https://clinicalinfo.hiv.gov/en/glossary/drug-synergism.
  • 72 Dai Y, Guo C, Guo W, Eickhoff C. Drug–drug interaction prediction with Wasserstein Adversarial Autoencoder-based knowledge graph embeddings. Brief Bioinform 2020;22(4):bbaa256. doi: 10.1093/bib/bbaa256.
  • 73 Wang J, Liu X, Shen S, Deng L, Liu H. DeepDDS: deep graph neural network with attention mechanism to predict synergistic drug combinations. Brief Bioinform 2022;23(1):bbab390. doi: 10.1093/bib/bbab390.
  • 74 Yang J, Xu Z, Wu WKK, Chu Q, Zhang Q. GraphSynergy: a network-inspired deep learning model for anticancer drug combination prediction. J Am Med Inform Assoc 2021;28(11):2336–45. doi: 10.1093/jamia/ocab162.
  • 75 Bang S, Ho Jhee J, Shin H. Polypharmacy Side Effect Prediction with Enhanced Interpretability Based on Graph Feature Attention Network. Bioinformatics 2021;37(18):2955-62. doi: 10.1093/bioinformatics/btab174
  • 76 Tong C, Rocheteau E, Veličković P, Lane N, Liò P. Predicting patient outcomes with graph representation learning. AI for Disease Surveillance and Pandemic Intelligence: Intelligent Disease Detection in Action. Springer International Publishing 2022;281–93. doi: 10.1007/978-3-030-93080-6_20.
  • 77 Xia F, Li B, Weng Y, He S, Liu K, Sun B, et al. MedConQA: Medical Conversational Question Answering System Based on Knowledge Graphs. Proceedings of the Conference on Empirical Methods in Natural Language Processing: System Demonstrations 2022;148–58.
  • 78 Tang X, Luo J, Shen C, Lai Z. Multi-view multichannel attention graph convolutional network for miRNA–disease association prediction. Brief Bioinform 2021;22(6):bbab174. doi: 10.1093/bib/bbab174.
  • 79 Long Y, Luo J, Zhang Y, Xia Y. Predicting human microbe–disease associations via graph attention networks with inductive matrix completion. Brief Bioinform 2020;22(3):bbaa146. doi: 10.1093/bib/bbaa146.
  • 80 Mehrabi N, Morstatter F, Saxena N, Lerman K, Galstyan A. A survey on bias and fairness in machine learning. ACM Comput Surv 2021;54(6):1-35. doi: 10.1145/3457607.
  • 81 Adamson AS, Smith A. Machine Learning and Health Care Disparities in Dermatology. JAMA Dermatol 2018;154:1247–8. doi: 10.1001/jamadermatol.2018.2348.
  • 82 Dai E, Wang S. Say No to the discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information. Proceedings of the 14th ACM International Conference on Web Search and Data Mining 2021;680–8. doi: 10.1145/3437963.3441752.
  • 83 Rahman T, Surma B, Backes M, Zhang Y. Fairwalk: Towards Fair Graph Embedding. Proceedings of the 28th International Joint Conference on Artificial Intelligence 2019;3289–95.
  • 84 Lohia, Pranay K, Ramamurthy N, Bhide M, Saha D, Varshney KR, Puri R. Bias Mitigation post-processing for Individual and Group Fairness. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing 2019;2847–51. doi: 10.1109/ICASSP.2019.8682620.
  • 85 Masoomi A, Hill D, Xu Z, Hersh CP, Silverman EK, Castaldi PJ, et al. Explanations of black-box models based on directional feature interactions. Proceedings of the 10th International Conference on Learning Representations 2022.
  • 86 Ying Z, Bourgeois D, You J, Zitnik M, Leskovec J. GNNExplainer: Generating Explanations for Graph Neural Networks. Proceedings of the 33rd Conference on Neural Information Processing Systems 2019:9244–55. doi: 10.5555/3454287.3455116.
  • 87 Luo D, Cheng W, Xu D, Yu W, Zong B, Chen H, et al. Parameterized Explainer for Graph Neural Network. Proceedings of the 34th Conference on Neural Information Processing Systems 2020;19620–31. doi: 10.1145/3447548.3467283.
  • 88 Funke T, Khosla M, Anand A. Hard Masking for Explaining Graph Neural Networks [Internet]. OpenReview.net 2021. Available from: https://openreview.net/forum?id=uDN8pRAdsoC.
  • 89 Vu M, Thai MT. PGM-Explainer: Probabilistic graphical model explanations for graph neural networks. Proceedings of the 34th Conference on Neural Information Processing Systems 2020;12225–35. doi: 10.5555/3495724.3496749.
  • 90 Yuan H, Tang J, Hu X, Ji S. XGNN: Towards model-level Explanations of Graph Neural Networks. KDD 2020;430–8. doi: 10.1145/3394486.3403085.
  • 91 Debnath AK, Lopez de Compadre RL, Debnath G, Shusterman AJ, Hansch C. Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds. Correlation with molecular orbital energies and hydrophobicity. J Med Chem 1991;34:786–97. doi: 10.1021/jm00106a046.
  • 92 Deng L. The MNIST Database of Handwritten Digit Images for Machine Learning Research [Best of the Web]. IEEE Signal Process Mag 2012;29:141–2. doi: 10.1109/MSP.2012.2211477.
  • 93 Agarwal C, Queen O, Lakkaraju H, Zitnik M. Evaluating explainability for graph neural networks. Sci Data 2023;10:144. doi: 10.1038/s41597-023-01974-x.
  • 94 Hu W, Cao K, Huang K, Huang EW, Subbian K, Leskovec J. TuneUp: A Training Strategy for Improving Generalization of Graph Neural Networks; 2022. doi: 10.48550/arxiv.2210.14843.
  • 95 Wang Q, Huang K, Chandak P, Zitnik M, Gehlenborg N. Extending the Nested Model for User-Centric XAI: A Design Study on GNN-based Drug Repurposing. IEEE Trans Vis Comput Graph 2022;29(1):1266-76. doi: 10.1109/TVCG.2022.3209435.
  • 96 Yan Y, Hashemi M, Swersky K, Yang Y, Danai Koutra. Two Sides of the Same Coin: Heterophily and Oversmoothing in Graph Convolutional Neural Networks. Proceedings of the IEEE International Conference on Data Mining 2022;1287-92. doi: 10.1109/icdm54844.2022.00169.
  • 97 Hu Z, Dong Y, Wang K, Sun Y. Heterogeneous Graph Transformer. Proceedings of the Web Conference 2020;2704–10. doi: 10.1145/3366423.3380027.
  • 98 Wang X, Ji H, Shi C, Wang B, Ye Y, Cui P, et al. Heterogeneous graph attention network. Proceedings of the World Wide Web Conference 2019;2022–32. doi: 10.1145/3308558.3313562.
  • 99 Frasca F, Rossi E, Eynard D, Chamberlain B, Bronstein M, Monti F. SIGN: Scalable inception graph neural networks; 2020. doi: 10.48550/arXiv.2004.11198.
  • 100 Cui G, Zhou J, Yang C, Liu Z. Adaptive Graph Encoder for Attributed Graph Embedding. KDD 2020;976–85. doi: 10.1145/3394486.3403140.
  • 101 Zeng H, Zhou H, Srivastava A, Kannan R, Prasanna V. GraphSAINT: Graph Sampling Based Inductive Learning Method. Proceedings of the 8th International Conference on Learning Representations 2020.
  • 102 Wang J, Ma A, Chang Y, Gong J, Jiang Y, Qi R, et al. scGNN is a novel graph neural network framework for single-cell RNA-Seq analyses. Nat Commun 2021;12:1882. doi: 10.1038/s41467-021-22197-x.
  • 103 Fu X, Zhang J, Meng Z, King I. MAGNN: Metapath Aggregated Graph Neural Network for Heterogeneous Graph Embedding. Proceedings of the Web Conference 2020;2331–41. doi: 10.1145/3366423.3380297.
  • 104 Hu Z, Dong Y, Wang K, Sun Y. Heterogeneous Graph Transformer. Proceedings of the Web Conference 2020;2704–10. doi: 10.1145/3366423.3380027.
  • 105 Zhu Y, Xu Y, Yu F, Liu Q, Wu S, Wang L. Graph Contrastive Learning with Adaptive Augmentation. Proceedings of the Web Conference 2021;2069–80. doi: 10.1145/3442381.3449802.
  • 106 Shi C, Xu M, Zhu Z, Zhang W, Zhang M, Tang J. GraphAF: a Flow-based Autoregressive Model for Molecular Graph Generation. Proceedings of the 8th International Conference on Learning Representations 2020.
  • 107 Du Y, Guo X, Cao H, Ye Y, Zhao L. Disentangled spatiotemporal graph generative models. Proceedings of the AAAI Conference on Artificial Intelligence 2022;36(6):6541–9. doi: 10.1609/aaai.v36i6.20607.