Semin Neurol 2023; 43(02): 229-250
DOI: 10.1055/s-0043-1767713
Review Article

Central Nervous System Neuroimmunologic Complications of COVID-19

1   Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
,
Sarah E. Conway
1   Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
› Institutsangaben

Abstract

Autoimmune disorders of the central nervous system following COVID-19 infection include multiple sclerosis (MS), neuromyelitis optica spectrum disorder, myelin oligodendrocyte glycoprotein antibody-associated disease, autoimmune encephalitis, acute disseminated encephalomyelitis, and other less common neuroimmunologic disorders. In general, these disorders are rare and likely represent postinfectious phenomena rather than direct consequences of the SARS-CoV-2 virus itself. The impact of COVID-19 infection on patients with preexisting neuroinflammatory disorders depends on both the disorder and disease-modifying therapy use. Patients with MS do not have an increased risk for severe COVID-19, though patients on anti-CD20 therapies may have worse clinical outcomes and attenuated humoral response to vaccination. Data are limited for other neuroinflammatory disorders, but known risk factors such as older age and medical comorbidities likely play a role. Prophylaxis and treatment for COVID-19 should be considered in patients with preexisting neuroinflammatory disorders at high risk for developing severe COVID-19.



Publikationsverlauf

Artikel online veröffentlicht:
20. April 2023

© 2023. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Mao L, Jin H, Wang M. et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol 2020; 77 (06) 683-690
  • 2 Zhou S, Jones-Lopez EC, Soneji DJ, Azevedo CJ, Patel VR. Myelin oligodendrocyte glycoprotein antibody-associated optic neuritis and myelitis in COVID-19. J Neuroophthalmol 2020; 40 (03) 398-402
  • 3 Corrêa DG, de Souza Lima FC, da Cruz Bezerra D, Coutinho AC, Hygino da Cruz LC. COVID-19 associated with encephalomyeloradiculitis and positive anti-aquaporin-4 antibodies: Cause or coincidence?. Mult Scler 2021; 27 (06) 973-976
  • 4 Ismail II, Salama S. Association of CNS demyelination and COVID-19 infection: an updated systematic review. J Neurol 2022; 269 (02) 541-576
  • 5 WHO Team. Weekly Epidemiological Update on COVID-19 - June 29, 2021. World Health Organization; 2021
  • 6 Normandin E, Holroyd KB, Collens SI. et al. Intrathecal inflammatory responses in the absence of SARS-CoV-2 nucleic acid in the CSF of COVID-19 hospitalized patients. J Neurol Sci 2021; 430: 120023
  • 7 Solomon IH, Normandin E, Bhattacharyya S. et al. Neuropathological features of COVID-19. N Engl J Med 2020; 383 (10) 989-992
  • 8 Manzano GS, McEntire CRS, Martinez-Lage M, Mateen FJ, Hutto SK. Acute disseminated encephalomyelitis and acute hemorrhagic leukoencephalitis following COVID-19: systematic review and meta-synthesis. Neurol Neuroimmunol Neuroinflamm 2021; 8 (06) e1080
  • 9 Marino Gammazza A, Légaré S, Lo Bosco G. et al. Molecular mimicry in the post-COVID-19 signs and symptoms of neurovegetative disorders?. Lancet Microbe 2021; 2 (03) e94
  • 10 Song E, Bartley CM, Chow RD. et al. Divergent and self-reactive immune responses in the CNS of COVID-19 patients with neurological symptoms. Cell Rep Med 2021; 2 (05) 100288
  • 11 Spudich S, Nath A. Nervous system consequences of COVID-19. Science 2022; 375 (6578): 267-269
  • 12 Lima M, Aloizou AM, Siokas V. et al. Coronaviruses and their relationship with multiple sclerosis: is the prevalence of multiple sclerosis going to increase after the COVID-19 pandemia?. Rev Neurosci 2022; 33 (07) 703-720
  • 13 Walton C, King R, Rechtman L. et al. Rising prevalence of multiple sclerosis worldwide: insights from the Atlas of MS, third edition. Mult Scler 2020; 26 (14) 1816-1821
  • 14 Bjornevik K, Cortese M, Healy BC. et al. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science 2022; 375 (6578): 296-301
  • 15 Confavreux C. Infections and the risk of relapse in multiple sclerosis. Brain 2002; 125 (Pt 5): 933-934
  • 16 Palao M, Fernández-Díaz E, Gracia-Gil J, Romero-Sánchez CM, Díaz-Maroto I, Segura T. Multiple sclerosis following SARS-CoV-2 infection. Mult Scler Relat Disord 2020; 45: 102377
  • 17 Yavari F, Raji S, Moradi F, Saeidi M. Demyelinating changes alike to multiple sclerosis: a case report of rare manifestations of COVID-19. Case Rep Neurol Med 2020; 2020: 6682251
  • 18 Moore L, Ghannam M, Manousakis G. A first presentation of multiple sclerosis with concurrent COVID-19 infection. eNeurologicalSci 2021; 22: 100299
  • 19 Sarwar S, Rogers S, Mohamed AS. et al. Multiple sclerosis following SARS-CoV-2 infection: a case report and literature review. Cureus 2021; 13 (10) e19036
  • 20 Ibrahim Ismail I, Al-Hashel J, Alroughani R, Farouk Ahmed S. A case report of multiple sclerosis after COVID-19 infection: causality or coincidence?. Neuroimmunology Reports 2021; 1: 100008
  • 21 Khair AM, Nikam R, Husain S, Ortiz M, Kaur G. Para and post-COVID-19 CNS acute demyelinating disorders in children: a case series on expanding the spectrum of clinical and radiological characteristics. Cureus 2022; 14 (03) e23405
  • 22 Pignolo A, Aprile M, Gagliardo C. et al. Clinical onset and multiple sclerosis relapse after SARS-CoV-2 infection. Neurol Int 2021; 13 (04) 695-700
  • 23 Narayan R, Simpson A, Fritsche K. et al. MOG antibody disease: a review of MOG antibody seropositive neuromyelitis optica spectrum disorder. Mult Scler Relat Disord 2018; 25: 66-72
  • 24 Kogure C, Kikushima W, Fukuda Y. et al. Myelin oligodendrocyte glycoprotein antibody-associated optic neuritis in a COVID-19 patient: a case report. Medicine (Baltimore) 2021; 100 (19) e25865
  • 25 Rojas-Correa DX, Reche-Sainz JA, Insausti-García A, Calleja-García C, Ferro-Osuna M. Post COVID-19 myelin oligodendrocyte glycoprotein antibody-associated optic neuritis. Neuroophthalmology 2021; 46 (02) 115-121
  • 26 de Ruijter NS, Kramer G, Gons RAR, Hengstman GJD. Neuromyelitis optica spectrum disorder after presumed coronavirus (COVID-19) infection: a case report. Mult Scler Relat Disord 2020; 46: 102474
  • 27 Sawalha K, Adeodokun S, Kamoga GR. COVID-19-induced acute bilateral optic neuritis. J Investig Med High Impact Case Rep 2020; 8: 2324709620976018
  • 28 Khan A, Panwala H, Ramadoss D, Khubchandani R. Myelin oligodendrocyte glycoprotein (MOG) antibody disease in a 11 year old with COVID-19 infection. Indian J Pediatr 2021; 88 (05) 488-489
  • 29 Sinha R, Wander A, Kapoor A, Yadav R, Kumar A, Gulati S. Acute demyelinating syndrome (MOG antibody positive) associated with COVID-19 infection: a widening spectrum. Clin Pediatr (Phila) 2021; 60 (13) 501-503
  • 30 Jumah M, Rahman F, Figgie M. et al. COVID-19, HHV6 and MOG antibody: a perfect storm. J Neuroimmunol 2021; 353: 577521
  • 31 Dias da Costa M, Leal Rato M, Cruz D, Valadas A, Antunes AP, Albuquerque L. Longitudinally extensive transverse myelitis with anti-myelin oligodendrocyte glycoprotein antibodies following SARS-CoV-2 infection. J Neuroimmunol 2021; 361: 577739
  • 32 Yang E, Husein A, Martinez-Perez J, Li T. Post-COVID-19 longitudinally extensive transverse myelitis with myelin oligodendrocyte glycoprotein antibodies. Case Rep Neurol Med 2022; 2022: 1068227
  • 33 Doukas SG, Santos AP, Mir W, Daud S, Zivin-Tutela TH. A rare case of myelin oligodendrocyte glycoprotein antibody-associated transverse myelitis in a 40-year-old patient with COVID-19. Cureus 2022; 14 (04) e23877
  • 34 Peters J, Alhasan S, Vogels CBF, Grubaugh ND, Farhadian S, Longbrake EE. MOG-associated encephalitis following SARS-COV-2 infection. Mult Scler Relat Disord 2021; 50: 102857
  • 35 Durovic E, Bien C, Bien CG, Isenmann S. MOG antibody-associated encephalitis secondary to COVID-19: case report. BMC Neurol 2021; 21 (01) 414
  • 36 Vraka K, Ram D, West S. et al. Two paediatric patients with encephalopathy and concurrent COVID-19 infection: two sides of the same coin?. Case Rep Neurol Med 2021; 2021: 6658000
  • 37 Jossy A, Jacob N, Sarkar S, Gokhale T, Kaliaperumal S, Deb AK. COVID-19-associated optic neuritis - a case series and review of literature. Indian J Ophthalmol 2022; 70 (01) 310-316
  • 38 Ide T, Kawanami T, Eriguchi M, Hara H. SARS-CoV-2-related myelin oligodendrocyte glycoprotein antibody-associated disease: a case report and literature review. Intern Med 2022; 61 (08) 1253-1258
  • 39 Balasa A, Neely B, McGuire S. A case of a 14 year old male with MOGAD (myelin oligocyte glycoprotein antibody disease) post-COVID-19 infection responsive to high dose corticosteroids and intravenous immunoglobulin (IVIG) therapy. Neurology 2022
  • 40 Pinto AA, Carroll LS, Nar V, Varatharaj A, Galea I. CNS inflammatory vasculopathy with antimyelin oligodendrocyte glycoprotein antibodies in COVID-19. Neurol Neuroimmunol Neuroinflamm 2020; 7 (05) e813
  • 41 Žorić L, Rajović-Mrkić I, Čolak E, Mirić D, Kisić B. Optic neuritis in a patient with seropositive myelin oligodendrocyte glycoprotein antibody during the post-COVID-19 period. Int Med Case Rep J 2021; 14: 349-355
  • 42 Wynford-Thomas R, Jacob A, Tomassini V. Neurological update: MOG antibody disease. J Neurol 2019; 266 (05) 1280-1286
  • 43 Pace S, Orrell M, Woodhall M. et al. Frequency of MOG-IgG in cerebrospinal fluid versus serum. J Neurol Neurosurg Psychiatry 2022; 93 (03) 334-335
  • 44 Assavapongpaiboon B, Apinyawasisuk S, Jariyakosol S. Myelin oligodendrocyte glycoprotein antibody-associated optic neuritis with COVID-19 infection: a case report and literature review. Am J Ophthalmol Case Rep 2022; 26: 101491
  • 45 López-Chiriboga AS, Majed M, Fryer J. et al. Association of MOG-IgG serostatus with relapse after acute disseminated encephalomyelitis and proposed diagnostic criteria for MOG-IgG-associated disorders. JAMA Neurol 2018; 75 (11) 1355-1363
  • 46 Marignier R, Hacohen Y, Cobo-Calvo A. et al. Myelin-oligodendrocyte glycoprotein antibody-associated disease. Lancet Neurol 2021; 20 (09) 762-772
  • 47 Wingerchuk DM, Banwell B, Bennett JL. et al; International Panel for NMO Diagnosis. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology 2015; 85 (02) 177-189
  • 48 Mirmosayyeb O, Ghaffary EM, Bagherieh S, Barzegar M, Dehghan MS, Shaygannejad V. Post COVID-19 infection neuromyelitis optica spectrum disorder (NMOSD): a case report-based systematic review. Mult Scler Relat Disord 2022; 60: 103697
  • 49 Batum M, Kisabay Ak A, Mavioğlu H. COVID-19 infection-induced neuromyelitis optica: a case report. Int J Neurosci 2022; 132 (10) 999-1004
  • 50 Jentzer A, Carra-Dallière C, Lozano C. et al. Neuromyelitis optica spectrum disorder following COVID-19 infection with increase in pre-existing anti-aquaporin-4 antibodies. J Neurol 2022; 269 (06) 2850-2853
  • 51 Ghosh R, De K, Roy D. et al. A case of area postrema variant of neuromyelitis optica spectrum disorder following SARS-CoV-2 infection. J Neuroimmunol 2020; 350: 577439
  • 52 Shaw VC, Chander G, Puttanna A. Neuromyelitis optica spectrum disorder secondary to COVID-19. Br J Hosp Med (Lond) 2020; 81 (09) 1-3
  • 53 Chuang T-Y, Miskin D. Case report: neuromyelitis optica associated with SARS-CoV-2. Pract Neurol 2020
  • 54 Zoghi A, Ramezani M, Roozbeh M, Darazam IA, Sahraian MA. A case of possible atypical demyelinating event of the central nervous system following COVID-19. Mult Scler Relat Disord 2020; 44: 102324
  • 55 Rafique S, Wasim A, Sultan T, Ahmad A. Post-COVID neuromyelitis optica spectrum disorder. J Coll Physicians Surg Pak 2021; 31 (07) 138-140
  • 56 Das D, Bhattacharjee H, Rehman O. et al. Neuromyelitis optica spectrum disorder post-COVID-19 infection: a rare case report from Northeast India. Indian J Ophthalmol 2022; 70 (05) 1833-1836
  • 57 Kovalev D, Thottempudi N, Ahmed A, Shanina E. New-onset neuromyelitis optica spectrum disorder in a patient with COVID-19 and chronic hepatitis B co-infection. Neuroimmunology Reports 2022; 2: 100063
  • 58 Barone S, Rapisarda L, Manzo L. et al. A case of neuromyelitis optica spectrum disorder (NMOSD) and acute myositis following SARS-CoV-2 infection. J Neurol Sci 2021; 429 DOI: 10.1016/j.jns.2021.119862.
  • 59 Holroyd KB, Manzano GS, Levy M. Update on neuromyelitis optica spectrum disorder. Curr Opin Ophthalmol 2020; 31 (06) 462-468
  • 60 Schulte EC, Hauer L, Kunz AB, Sellner J. Systematic review of cases of acute myelitis in individuals with COVID-19. Eur J Neurol 2021; 28 (10) 3230-3244
  • 61 Ahmad SA, Salih KH, Ahmed SF. et al. Post COVID-19 transverse myelitis; a case report with review of literature. Ann Med Surg (Lond) 2021; 69: 102749
  • 62 Zanin L, Saraceno G, Panciani PP. et al. SARS-CoV-2 can induce brain and spine demyelinating lesions. Acta Neurochir (Wien) 2020; 162 (07) 1491-1494
  • 63 Rossi T, Novi G, D'Agostino I. et al. Bilateral optic neuritis as the presenting sign of post SARS-CoV-2 acute disseminated encephalomyelitis. Am J Ophthalmol Case Rep 2022; 25: 101273
  • 64 Gelibter S, Bellavia G, Arbasino C. et al. Encephalopathy as a prognostic factor in adults with acute disseminated encephalomyelitis following COVID-19. J Neurol 2022; 269 (05) 2293-2300
  • 65 Oumerzouk J, Nabil M, Klevor R. et al. Clinicoradiological and prognostic features of COVID-19-associated acute disseminated encephalomyelitis. Rev Neurol (Paris) 2022; 178 (1-2): 144-150
  • 66 Valencia Sanchez C, Theel E, Binnicker M, Toledano M, McKeon A. Autoimmune encephalitis after SARS-CoV-2 infection: case frequency, findings, and outcomes. Neurology 2021; 97 (23) e2262-e2268
  • 67 Nabizadeh F, Balabandian M, Sodeifian F, Rezaei N, Rostami MR, Naser Moghadasi A. Autoimmune encephalitis associated with COVID-19: a systematic review. Mult Scler Relat Disord 2022; 62: 103795
  • 68 Payus AO, Jeffree MS, Ohn MH. et al. Immune-mediated neurological syndrome in SARS-CoV-2 infection: a review of literature on autoimmune encephalitis in COVID-19. Neurol Sci 2022; 43 (03) 1533-1547
  • 69 Stoian A, Stoian M, Bajko Z. et al. Autoimmune encephalitis in COVID-19 infection: our experience and systematic review of the literature. Biomedicines 2022; 10 (04) 774
  • 70 Grimaldi S, Lagarde S, Harlé JR, Boucraut J, Guedj E. Autoimmune encephalitis concomitant with SARS-CoV-2 infection: insight from 18F-FDG PET imaging and neuronal autoantibodies. J Nucl Med 2020; 61 (12) 1726-1729
  • 71 Bodro M, Compta Y, Llansó L. et al; “Hospital Clínic Infecto-COVID-19” and “Hospital Clínic Neuro-COVID-19” Groups. Increased CSF levels of IL-1β, IL-6, and ACE in SARS-CoV-2-associated encephalitis. Neurol Neuroimmunol Neuroinflamm 2020; 7 (05) e821
  • 72 Graus F, Titulaer MJ, Balu R. et al. A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol 2016; 15 (04) 391-404
  • 73 Keller E, Brandi G, Winklhofer S. et al. Large and small cerebral vessel involvement in severe COVID-19: detailed clinical workup of a case series. Stroke 2020; 51 (12) 3719-3722
  • 74 Lersy F, Anheim M, Willaume T. et al. Cerebral vasculitis of medium-sized vessels as a possible mechanism of brain damage in COVID-19 patients. J Neuroradiol 2021; 48 (03) 141-146
  • 75 Timmons GM, Rempe T, Bevins EA. et al. CNS lymphocytic vasculitis in a young woman with COVID-19 infection. Neurol Neuroimmunol Neuroinflamm 2021; 8 (05) e1048
  • 76 Dixon L, Coughlan C, Karunaratne K. et al. Immunosuppression for intracranial vasculitis associated with SARS-CoV-2: therapeutic implications for COVID-19 cerebrovascular pathology. J Neurol Neurosurg Psychiatry 2020; jnnp-2020-324291
  • 77 Oliveira RMC, Santos DH, Olivetti BC, Takahashi JT. Bilateral trochlear nerve palsy due to cerebral vasculitis related to COVID-19 infection. Arq Neuropsiquiatr 2020; 78 (06) 385-386
  • 78 Vaschetto R, Cena T, Sainaghi PP. et al. Cerebral nervous system vasculitis in a COVID-19 patient with pneumonia. J Clin Neurosci 2020; 79: 71-73
  • 79 Hanafi R, Roger PA, Perin B. et al. COVID-19 neurologic complication with CNS vasculitis-like pattern. AJNR Am J Neuroradiol 2020; 41 (08) 1384-1387
  • 80 Nannoni S, de Groot R, Bell S, Markus HS. Stroke in COVID-19: a systematic review and meta-analysis. Int J Stroke 2021; 16 (02) 137-149
  • 81 Bhattacharyya S, Berkowitz AL. Primary angiitis of the central nervous system: avoiding misdiagnosis and missed diagnosis of a rare disease. Pract Neurol 2016; 16 (03) 195-200
  • 82 Louapre C, Collongues N, Stankoff B. et al; COVISEP Investigators. Clinical characteristics and outcomes in patients with coronavirus disease 2019 and multiple sclerosis. JAMA Neurol 2020; 77 (09) 1079-1088
  • 83 Salter A, Fox RJ, Newsome SD. et al. Outcomes and risk factors associated with SARS-CoV-2 infection in a North American Registry of patients with multiple sclerosis. JAMA Neurol 2021; 78 (06) 699-708
  • 84 Finsterer J. SARS-CoV-2 triggered relapse of multiple sclerosis. Clin Neurol Neurosurg 2022; 215: 107210
  • 85 Etemadifar M, Abhari AP, Nouri H. et al. Does COVID-19 increase the long-term relapsing-remitting multiple sclerosis clinical activity? A cohort study. BMC Neurol 2022; 22 (01) 64
  • 86 Etemadifar M, Sedaghat N, Aghababaee A. et al. COVID-19 and the risk of relapse in multiple sclerosis patients: a fight with no bystander effect?. Mult Scler Relat Disord 2021; 51: 102915
  • 87 Barzegar M, Vaheb S, Mirmosayyeb O, Afshari-Safavi A, Nehzat N, Shaygannejad V. Can coronavirus disease 2019 (COVID-19) trigger exacerbation of multiple sclerosis? A retrospective study. Mult Scler Relat Disord 2021; 52: 102947
  • 88 Garjani A, Middleton RM, Nicholas R, Evangelou N. Recovery from COVID-19 in multiple sclerosis: a prospective and longitudinal cohort study of the United Kingdom multiple sclerosis register. Neurol Neuroimmunol Neuroinflamm 2021; 9 (01) e1118
  • 89 Czarnowska A, Kapica-Topczewska K, Zajkowska O. et al. Symptoms after COVID-19 infection in individuals with multiple sclerosis in Poland. J Clin Med 2021; 10 (22) 5225
  • 90 Newsome SD, Cross AH, Fox RJ. et al. COVID-19 in patients with neuromyelitis optica spectrum disorders and myelin oligodendrocyte glycoprotein antibody disease in North America: from the COViMS Registry. Neurol Neuroimmunol Neuroinflamm 2021; 8 (05) e1057
  • 91 Sen S, Tuncer A, Ozakbas S. et al. The Turkish experience of COVID-19 infection in people with NMOSD and MOGAD: a milder course?. Mult Scler Relat Disord 2022; 58: 103399
  • 92 Woodhall M, Mitchell JW, Gibbons E, Healy S, Waters P, Huda S. Case report: myelin oligodendrocyte glycoprotein antibody-associated relapse with COVID-19. Front Neurol 2020; 11: 598531
  • 93 Barzegar M, Mirmosayyeb O, Ebrahimi N. et al. COVID-19 susceptibility and outcomes among patients with neuromyelitis optica spectrum disorder (NMOSD): a systematic review and meta-analysis. Mult Scler Relat Disord 2022; 57: 103359
  • 94 Alonso R, Silva B, Garcea O. et al. COVID-19 in multiple sclerosis and neuromyelitis optica spectrum disorder patients in Latin America: COVID-19 in MS and NMOSD patients in LATAM. Mult Scler Relat Disord 2021; 51: 102886
  • 95 Apostolos-Pereira SL, Campos Ferreira L, Boaventura M. et al; Neuroimmunology Brazilian Study Group. Clinical features of COVID-19 on patients with neuromyelitis optica spectrum disorders. Neurol Neuroimmunol Neuroinflamm 2021; 8 (06) e1060
  • 96 Moreno-Torres V, Mendoza C, Mellor-Pita S. et al. Systemic autoimmune diseases in patients hospitalized with COVID-19 in Spain: a nation-wide registry study. Viruses 2022; 14 (08) 1631
  • 97 Mehta P, Gasparyan AY, Zimba O, Kitas GD. Systemic lupus erythematosus in the light of the COVID-19 pandemic: infection, vaccination, and impact on disease management. Clin Rheumatol 2022; 41 (09) 2893-2910
  • 98 Lotan I, Wilf-Yarkoni A, Friedman Y, Stiebel-Kalish H, Steiner I, Hellmann MA. Safety of the BNT162b2 COVID-19 vaccine in multiple sclerosis (MS): early experience from a tertiary MS center in Israel. Eur J Neurol 2021; 28 (11) 3742-3748
  • 99 Ciampi E, Uribe-San-Martin R, Soler B. et al. Safety and humoral response rate of inactivated and mRNA vaccines against SARS-CoV-2 in patients with multiple sclerosis. Mult Scler Relat Disord 2022; 59: 103690
  • 100 Baden LR, El Sahly HM, Essink B. et al; COVE Study Group. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med 2021; 384 (05) 403-416
  • 101 Polack FP, Thomas SJ, Kitchin N. et al; C4591001 Clinical Trial Group. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. N Engl J Med 2020; 383 (27) 2603-2615
  • 102 Katz JD, Bouley AJ, Jungquist RM, Douglas EA, O'Shea IL, Lathi ES. Humoral and T-cell responses to SARS-CoV-2 vaccination in multiple sclerosis patients treated with ocrelizumab. Mult Scler Relat Disord 2022; 57: 103382
  • 103 Novak F, Nilsson AC, Nielsen C. et al. Humoral immune response following SARS-CoV-2 mRNA vaccination concomitant to anti-CD20 therapy in multiple sclerosis. Mult Scler Relat Disord 2021; 56: 103251
  • 104 Achiron A, Mandel M, Dreyer-Alster S. et al. Humoral immune response to COVID-19 mRNA vaccine in patients with multiple sclerosis treated with high-efficacy disease-modifying therapies. Ther Adv Neurol Disord 2021; 14: 17 562864211012835
  • 105 Dreyer-Alster S, Menascu S, Mandel M. et al. COVID-19 vaccination in patients with multiple sclerosis: safety and humoral efficacy of the third booster dose. J Neurol Sci 2022; 434: 120155
  • 106 Palomares Cabeza V, Kummer LYL, Wieske L. et al; Target-to-B! (T2B!) SARS-CoV-2 Study Group. Longitudinal T-cell responses after a third SARS-CoV-2 vaccination in patients with multiple sclerosis on ocrelizumab or fingolimod. Neurol Neuroimmunol Neuroinflamm 2022; 9 (04) e1178
  • 107 Achiron A, Mandel M, Dreyer-Alster S. et al. Humoral immune response in multiple sclerosis patients following PfizerBNT162b2 COVID19 vaccination: up to 6 months cross-sectional study. J Neuroimmunol 2021; 361: 577746
  • 108 Furer V, Eviatar T, Zisman D. et al. Immunogenicity and safety of the BNT162b2 mRNA COVID-19 vaccine in adult patients with autoimmune inflammatory rheumatic diseases and in the general population: a multicentre study. Ann Rheum Dis 2021; 80 (10) 1330-1338
  • 109 Lotan I, Romanow G, Levy M. Patient-reported safety and tolerability of the COVID-19 vaccines in persons with rare neuroimmunological diseases. Mult Scler Relat Disord 2021; 55: 103189
  • 110 Maarouf A, Rico A, Boutiere C. et al; Under the Aegis of OFSEP. Extending rituximab dosing intervals in patients with MS during the COVID-19 pandemic and beyond?. Neurol Neuroimmunol Neuroinflamm 2020; 7 (05) e825
  • 111 Nielsen AS, Miravalle A, Langer-Gould A, Cooper J, Edwards KR, Kinkel RP. Maximally tolerated versus minimally effective dose: the case of rituximab in multiple sclerosis. Mult Scler 2012; 18 (03) 377-378
  • 112 Yang CS, Yang L, Li T. et al. Responsiveness to reduced dosage of rituximab in Chinese patients with neuromyelitis optica. Neurology 2013; 81 (08) 710-713
  • 113 Lebrun C, Cohen M, Rosenthal-Allieri MA. et al. Only follow-up of memory B cells helps monitor rituximab administration to patients with neuromyelitis optica spectrum disorders. Neurol Ther 2018; 7 (02) 373-383
  • 114 Tolf A, Wiberg A, Müller M. et al. Factors associated with serological response to SARS-CoV-2 vaccination in patients with multiple sclerosis treated with rituximab. JAMA Netw Open 2022; 5 (05) e2211497
  • 115 Asplund Högelin K, Ruffin N, Pin E. et al. B-cell repopulation dynamics and drug pharmacokinetics impact SARS-CoV-2 vaccine efficacy in anti-CD20-treated multiple sclerosis patients. Eur J Neurol 2022; 29 (11) 3317-3328
  • 116 Hammond J, Leister-Tebbe H, Gardner A. et al; EPIC-HR Investigators. Oral nirmatrelvir for high-risk, nonhospitalized adults with COVID-19. N Engl J Med 2022; 386 (15) 1397-1408
  • 117 Coulson JM, Adams A, Gray LA, Evans A. COVID-19 “Rebound” associated with nirmatrelvir/ritonavir pre-hospital therapy. J Infect 2022; 85 (04) 436-480
  • 118 Fact Sheet for Healthcare Providers: Emergency Use Authorization for Paxlovid. Available at: https://www.fda.gov/media/155050/download
  • 119 Manzano GS, Rice DR, Klawiter EC. et al. Anti-SARS-CoV-2 monoclonal antibodies for the treatment of active COVID-19 in multiple sclerosis: an observational study. Mult Scler 2022; 28 (07) 1146-1150
  • 120 Levin MJ, Ustianowski A, De Wit S. et al; PROVENT Study Group. Intramuscular AZD7442 (Tixagevimab-Cilgavimab) for prevention of COVID-19. N Engl J Med 2022; 386 (23) 2188-2200
  • 121 Fact Sheet for Healthcare Providers: Emergency Use Authorization for Evusheld. Available at: https://www.fda.gov/media/154701/download
  • 122 Al Jurdi A, Morena L, Cote M, Bethea E, Azzi J, Riella LV. Tixagevimab/cilgavimab pre-exposure prophylaxis is associated with lower breakthrough infection risk in vaccinated solid organ transplant recipients during the omicron wave. Am J Transplant 2022; 22 (12) 3130-3136
  • 123 Conte WL, Golzarri-Arroyo L. Tixagevimab and cilgavimab (Evusheld) boosts antibody levels to SARS-CoV-2 in patients with multiple sclerosis on b-cell depleters. Mult Scler Relat Disord 2022; 63: 103905
  • 124 Alwan NA, Johnson L. Defining long COVID: going back to the start. Med (N Y) 2021; 2 (05) 501-504
  • 125 Datta SD, Talwar A, Lee JT. A proposed framework and timeline of the spectrum of disease due to SARS-CoV-2 infection: illness beyond acute infection and public health implications. JAMA 2020; 324 (22) 2251-2252
  • 126 Garjani A, Middleton RM, Hunter R. et al. COVID-19 is associated with new symptoms of multiple sclerosis that are prevented by disease modifying therapies. Mult Scler Relat Disord 2021; 52: 102939
  • 127 Fragoso YD, Pacheco FAS, Silveira GL, Oliveira RA, Carvalho VM, Martimbianco ALC. COVID-19 in a temporal relation to the onset of multiple sclerosis. Mult Scler Relat Disord 2021; 50: 102863
  • 128 Domingues RB, Mendes-Correa MC, de Moura Leite FBV. et al. First case of SARS-COV-2 sequencing in cerebrospinal fluid of a patient with suspected demyelinating disease. J Neurol 2020; 267 (11) 3154-3156
  • 129 Sardar S, Safan A, Okar L, Sadik N, Adeli G. The diagnostic dilemma of bilateral optic neuritis and idiopathic intracranial hypertension coexistence in a patient with recent COVID-19 infection. Clin Case Rep 2021; 9 (06) e04347
  • 130 Simpson-Yap S, De Brouwer E, Kalincik T. et al. Associations of disease-modifying therapies with COVID-19 severity in multiple sclerosis. Neurology 2021; 97 (19) e1870-e1885
  • 131 Gombolay GY, Dutt M, Tyor W. Immune responses to SARS-CoV-2 vaccination in multiple sclerosis: a systematic review/meta-analysis. Ann Clin Transl Neurol 2022; 9 (08) 1321-1331
  • 132 Freedman MS, Jack D, Murgašová Z, Todorović M, Seitzinger A. Outcomes of COVID-19 among patients treated with subcutaneous interferon beta-1a for multiple sclerosis. Mult Scler Relat Disord 2021; 56: 103283
  • 133 Simpson-Yap S, Pirmani A, De Brouwer E. et al. Severity of COVID19 infection among patients with multiple sclerosis treated with interferon-β. Mult Scler Relat Disord 2022; 66: 104072
  • 134 Milo R, Staun-Ram E, Karussis D. et al; Israeli Neuroimmunology Study Group on COVID-19 Vaccination in Multiple Sclerosis. Humoral and cellular immune responses to SARS-CoV-2 mRNA vaccination in patients with multiple sclerosis: an Israeli multi-center experience following 3 vaccine doses. Front Immunol 2022; 13: 868915
  • 135 Kister I, Patskovsky Y, Curtin R. et al. Cellular and humoral immunity to SARS-CoV-2 infection in multiple sclerosis patients on ocrelizumab and other disease-modifying therapies: a multi-ethnic observational study. Ann Neurol 2022; 91 (06) 782-795
  • 136 Tortorella C, Aiello A, Gasperini C. et al; INMI COVID-19 Vaccine Study Group. Humoral- and T-cell-specific immune responses to SARS-CoV-2 mRNA vaccination in patients with MS using different disease-modifying therapies. Neurology 2022; 98 (05) e541-e554
  • 137 Sullivan R, Kilaru A, Hemmer B. et al. COVID-19 infection in fingolimod- or siponimod-treated patients: case series. Neurol Neuroimmunol Neuroinflamm 2021; 9 (01) e1092
  • 138 Cross AH, Delgado S, Habek M. et al. COVID-19 outcomes and vaccination in people with relapsing multiple sclerosis treated with ofatumumab. Neurol Ther 2022; 11 (02) 741-758
  • 139 Mimori M, Komatsu T, Maku T, Mitsumura H, Iguchi Y. Generalized myasthenia gravis patients infected with COVID-19 should continue eculizumab. Neurol Sci 2022; 43 (07) 4081-4083
  • 140 Fodil S, Annane D. Complement inhibition and COVID-19: the story so far. ImmunoTargets Ther 2021; 10: 273-284
  • 141 Jovicevic V, Ivanovic J, Momcilovic N. et al. Humoral response to SARS-CoV-2 infection and vaccines against COVID-19 in patients with neuromyelitis optica spectrum disorders: impact of immunosuppressive treatment. Mult Scler Relat Disord 2022; 62: 103794
  • 142 Svačina MKR, Meißner A, Schweitzer F. et al. Antibody response after COVID-19 vaccination in intravenous immunoglobulin-treated immune neuropathies. Eur J Neurol 2022; 29 (11) 3380-3388
  • 143 Ugarte-Gil MF, Alarcón GS, Izadi Z. et al. Characteristics associated with poor COVID-19 outcomes in individuals with systemic lupus erythematosus: data from the COVID-19 Global Rheumatology Alliance. Ann Rheum Dis 2022; 81 (07) 970-978
  • 144 Meshram HS, Kute V, Rane H. et al. Humoral and cellular response of COVID-19 vaccine among solid organ transplant recipients: a systematic review and meta-analysis. Transpl Infect Dis 2022; 24 (06) e13926
  • 145 De Santis M, Motta F, Isailovic N. et al. Dose-dependent impairment of the immune response to the Moderna-1273 mRNA vaccine by mycophenolate mofetil in patients with rheumatic and autoimmune liver diseases. Vaccines (Basel) 2022; 10 (05) 801
  • 146 Krasselt M, Wagner U, Nguyen P. et al. Humoral and cellular response to COVID-19 vaccination in patients with autoimmune inflammatory rheumatic diseases under real-life conditions. Rheumatology (Oxford) 2022; 61 (SI2): SI180-SI188
  • 147 Kashiwado Y, Kimoto Y, Sawabe T. et al. Antibody response to SARS-CoV-2 mRNA vaccines in patients with rheumatic diseases in Japan: interim analysis of a multicenter cohort study. Mod Rheumatol 2022; roac030
  • 148 Izadi Z, Brenner EJ, Mahil SK. et al; Psoriasis Patient Registry for Outcomes, Therapy and Epidemiology of COVID-19 Infection (PsoProtect); the Secure Epidemiology of Coronavirus Under Research Exclusion for Inflammatory Bowel Disease (SECURE-IBD); and the COVID-19 Global Rheumatology Allianc, Psoriasis Patient Registry for Outcomes, Therapy and Epidemiology of COVID-19 Infection (PsoProtect); the Secure Epidemiology of Coronavirus Under Research Exclusion for Inflammatory Bowel Disease (SECURE-IBD); and the COVID-19 Global Rheumatology Alliance (GRA). Association between tumor necrosis factor inhibitors and the risk of hospitalization or death among patients with immune-mediated inflammatory disease and COVID-19. JAMA Netw Open 2021; 4 (10) e2129639
  • 149 Monti S, Fornara C, Delvino P. et al. Immunosuppressive treatments selectively affect the humoral and cellular response to SARS-CoV-2 in vaccinated patients with vasculitis. Rheumatology (Oxford) 2023; 62 (02) 726-734
  • 150 Haberman RH, Herati R, Simon D. et al. Methotrexate hampers immunogenicity to BNT162b2 mRNA COVID-19 vaccine in immune-mediated inflammatory disease. Ann Rheum Dis 2021; 80 (10) 1339-1344
  • 151 Mahil SK, Bechman K, Raharja A. et al. Humoral and cellular immunogenicity to a second dose of COVID-19 vaccine BNT162b2 in people receiving methotrexate or targeted immunosuppression: a longitudinal cohort study. Lancet Rheumatol 2022; 4 (01) e42-e52
  • 152 Abhishek A, Boyton RJ, Peckham N. et al; VROOM Study Investigators. Effect of a 2-week interruption in methotrexate treatment versus continued treatment on COVID-19 booster vaccine immunity in adults with inflammatory conditions (VROOM study): a randomised, open label, superiority trial. Lancet Respir Med 2022; 10 (09) 840-850
  • 153 Kennedy NA, Lin S, Goodhand JR. et al; Contributors to the CLARITY IBD Study. Infliximab is associated with attenuated immunogenicity to BNT162b2 and ChAdOx1 nCoV-19 SARS-CoV-2 vaccines in patients with IBD. Gut 2021; 70 (10) 1884-1893
  • 154 Vollenberg R, Tepasse PR, Lorentzen E, Nowacki TM. Impaired humoral immunity with concomitant preserved T cell reactivity in IBD patients on treatment with infliximab 6 month after vaccination with the SARS-CoV-2 mRNA vaccine BNT162b2: a pilot study. J Pers Med 2022; 12 (05) 694
  • 155 Bar-Or A, Wiendl H, Miller B. et al. Randomized study of teriflunomide effects on immune responses to neoantigen and recall antigens. Neurol Neuroimmunol Neuroinflamm 2015; 2 (02) e70
  • 156 Rutgers A, Westerweel PE, van der Holt B. et al. Timely administration of tocilizumab improves outcome of hospitalized COVID-19 patients. PLoS One 2022; 17 (08) e0271807