CC BY 4.0 · Organic Materials 2023; 05(02): 148-157
DOI: 10.1055/s-0043-1761311
Organic Thin Films: From Vapor Deposition to Functional Applications
Original Article

Batch-Operated Condensed Droplet Polymerization to Understand the Effect of Temperature on the Size Distribution of Polymer Nanodomes

a   Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
b   Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
,
a   Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
› Author Affiliations


Abstract

Size-controlled polymer nanodomes (PNDs) benefit a broad cross-section of existing and emerging technologies. Condensed droplet polymerization (CDP) is a vacuum-based synthesis technology that produces PNDs from monomer precursors in a single step. However, the effect of synthesis and processing conditions on the PND size distribution remains elusive. Towards size distribution control, we report the effect of substrate temperature, on which monomer droplets condense, on the size distribution of PNDs. We take a reductionist approach and operate the CDP under batch mode to match the conditions commonly used in condensation research. Notably, despite the rich knowledge base in dropwise condensation, the behavior of nonpolar liquids like a common monomer, i.e., 2-hydroxyethyl methacrylate (HEMA), is not well understood. We bridge that gap by demonstrating that dropwise condensation of HEMA follows a two-stage growth process. Early-stage growth is dominated by drop nucleation and growth, giving rise to relatively uniform sizes with a lognormal distribution, whereas late-stage growth is dominated by the combined effect of drop coalescence and renucleation, leading to a bimodal size distribution. This new framework for understanding the PND size distribution enables an unprecedented population of PNDs. Their controlled size distribution has the potential to enable programmable properties for emergent materials.



Publication History

Received: 28 January 2023

Accepted after revision: 12 May 2023

Article published online:
19 June 2023

© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/).

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Franklin T, Streever DL, Yang R. Chem. Mater. 2022; 34: 5960
  • 2 Anselmo AC, Mitragotri S. Bioeng. Transl. Med. 2019; 4: e10143
  • 3 Kim H-M, Lee H-Y, Park J-H, Lee S-K. ACS Sens. 2022; 7: 1451
  • 4 Decuzzi P, Godin B, Tanaka T, Lee S-Y, Chiappini C, Liu X, Ferrari M. J. Controlled Release 2010; 141: 320
  • 5 Steltz E, Mozeika A, Rembisz J, Corson N, Jaeger HM. Jamming as an Enabling Technology for Soft Robotics.. Proceedings of the SPIE 7642, Electroactive Polymer Actuators and Devices. Bar-Cohen Y. SPIE; San Diego, CA: 2010: 764225
  • 6 Guo Y, Wassgren CR, Hancock BC, Ketterhagen WR, Curtis JS. Phys. Fluids 2013; 25: 63304
  • 7 Wu H-Y, Cunningham BT. Nanoscale 2014; 6: 5162
  • 8 Yunker PJ, Still T, Lohr MA, Yodh AG. Nature 2011; 476: 308
  • 9 Kinsyo T, Nakanishi H, Hirai K, Noda H, Takikawa T, Yahiro S. Polym. J. 2017; 49: 593
  • 10 Karthaus O, Mikami S, Hashimoto Y. J. Colloid Interface Sci. 2006; 301: 703
  • 11 Champion JA, Katare YK, Mitragotri S. Proc. Natl. Acad. Sci. U. S. A. 2007; 104: 11901
  • 12 Bradley LC, Stebe KJ, Lee D. J. Am. Chem. Soc. 2016; 138: 11437
  • 13 Seidel S, Riche C, Gupta M. Chemical Vapor Deposition of Polymer Films.. Encyclopedia of Polymer Science and Technology. 2011. DOI: 10.1002/0471440264.pst467
  • 14 Cheng BK, Naccarato B, Kim KJ, Kumar A. Int. J. Heat Mass Transfer 2016; 102: 154
  • 15 Baghban A, Bahadori M, Rozyn J, Lee M, Abbas A, Bahadori A, Rahimali A. Appl. Therm. Eng. 2016; 93: 1043
  • 16 Leach RN, Stevens F, Langford SC, Dickinson JT. Langmuir 2006; 22: 8864
  • 17 Enright R, Miljkovic N, Alvarado JL, Kim K, Rose JW. Nanoscale Microscale Thermophys. Eng. 2014; 18: 223
  • 18 Rose JW. Int. J. Heat Mass Transfer 1967; 10: 755
  • 19 Ulrich S, Stoll S, Pefferkorn E. Langmuir 2004; 20: 1763
  • 20 Castillo JE, Weibel JA, Garimella SV. Int. J. Heat Mass Transfer 2015; 80: 759
  • 21 Meakin P. Phys. Scr. 1992; 1992: 31
  • 22 Betz AR. The Role of Droplet Dynamics in Condensation Frosting. Ice Adhesion: Mechanism, Measurement and Mitigation. Mittal KL, Choi C-H. Scrivener Publishing LLC; Beverly, MA: 2020: 135
  • 23 Whitesides GMAngew. Chem. Int. Ed. 2018 57. 4258
  • 24 Li W, Liu Y, Wu M, Feng X, Redfern SAT, Shang Y, Yong X, Feng T, Wu K, Liu Z, Li B, Chen Z, Tse JS, Lu S, Yang B. Adv. Mater. 2018; 30: 1800676
  • 25 Pereira AdES, Oliveira HC, Fraceto LF. Sci. Rep. 2019; 9: 7135
  • 26 Xu W, Lan Z, Liu Q, Du B, Ma X. Int. J. Heat Mass Transfer 2018; 127: 44
  • 27 Kim SH, Noh J, Jeon MK, Kim KW, Lee LP, Woo SI. J. Micromech. Microeng. 2006; 16: 526
  • 28 Sun Q. Vib. Spectrosc. 2009; 51: 213
  • 29 Hosseinioun A, Nürnberg P, Schönhoff M, Diddens D, Paillard E. RSC Adv. 2019; 9: 27574
  • 30 Howell NK, Arteaga G, Nakai S, Li-Chan ECY. J. Agric. Food Chem. 1999; 47: 924
  • 31 Warwick T. Simultaneous IR and Raman Microscopy. 2019 Accessed June 06, 2023 at: https://blue-scientific.com/simultaneous-ir-raman/
  • 32 Marshall CP, Olcott Marshall A. Phil. Trans. R. Soc. A 2010; 368: 3137
  • 33 Karthik G, Premkumar K, Senthil Murugan V. J. Emerg. Technol. Innov. Res. 2018; 5: 338
  • 34 Hatcher JB, Yost DM. J. Chem. Phys. 1937; 5: 992
  • 35 Perrotta A, Christian P, Jones AOF, Muralter F, Coclite AM. Macromolecules 2018; 51: 5694
  • 36 Rose JW. Int. J. Heat Mass Transfer 1976; 19: 1363
  • 37 Mu C, Pang J, Lu Q, Liu T. Chem. Eng. Sci. 2008; 63: 874
  • 38 Ulrich S, Stoll S, Pefferkorn E. Langmuir 2004; 20: 1763
  • 39 Song T, Lan Z, Ma X, Bai T. Int. J. Therm. Sci. 2009; 48: 2228
  • 40 Kobayashi Y, Kuninaka H. J. Phys. Soc. Jpn. 2022; 91: 084001
  • 41 Zhao H, Beysens D. Langmuir 1995; 11: 627
  • 42 Harges E, Cremaschi L, Adanur B. Appl. Therm. Eng. 2021; 182: 116052
  • 43 Rose JW, Glicksman LR. Int. J. Heat Mass Transfer 1973; 16: 411
  • 44 Boroomandi Barati S, Pionnier N, Pinoli J-C, Valette S, Gavet Y. Int. J. Therm. Sci. 2018; 124: 356
  • 45 McCormick JL, Westwater JW. Chem. Eng. Sci. 1965; 20: 1021
  • 46 Rose JW. J. Enhanc. Heat Transf. 2015; 22: 89
  • 47 Xie J, Xu J, He X, Liu Q. Sci. Rep. 2017; 7: 39932
  • 48 Brain P, Butler DR. Plant Cell Environ. 1985; 8: 247
  • 49 Xie C, Liu G, Wang M. Langmuir 2016; 32: 8255
  • 50 Unger K, Resel R, Coclite AM. Macromol. Chem. Phys. 2016; 217: 2372
  • 51 Buback M, Kurz CH. Macromol. Chem. Phys. 1998; 199: 2301
  • 52 Mei M, Yu B, Zou M, Luo L. Int. J. Heat Mass. Transfer 2011; 54: 2004
  • 53 Coclite AM, Shi Y, Gleason KK. Adv. Funct. Mater. 2012; 22: 2167