Subscribe to RSS
DOI: 10.1055/s-0043-122669
Das Mikrobiom des Darms: Dysbiose
Eine unterschätzte Quelle für UrämietoxinePublication History
Publication Date:
11 January 2018 (online)
Zusammenfassung
Das Mikrobiom des Darms wird gelegentlich auch als das „zweite menschliche Genom“ bezeichnet, da es eine hoch relevante Bedeutung in Gesundheit, aber auch Krankheit hat. Im Darm gibt es eine beeindruckend große Anzahl von Bakterien, die eine enge Beziehung zum Wirt pflegen. In bestimmten Situationen kann es zu einer Dysbiose kommen, was in der Konsequenz eine Schädigung des Wirtes nach sich ziehen kann. In den Bakterien werden zahlreiche Substanzen gebildet, die vom gesunden Körper nach der Aufnahme unkompliziert verstoffwechselt bzw. ausgeschieden werden können. Bei Patienten mit terminaler Nierenfunktionsstörung hingegen kommt es zum einen zu einer Veränderung des Darmmikrobioms und gleichzeitig zu einer Akkumulation von aus dem Darm aufgenommenen Substanzen, die durch das veränderte Mikrobiom produziert und nicht mehr eliminiert werden können. Dies führt zu einer Akkumulation von Urämietoxinen, die auch wesentlich zu dem exzessiven, v. a. kardiovaskulären Mortalitätsrisiko der Patienten beitragen. Eine Strategie zur Hilfe für den betroffenen Patienten mag die Wiederherstellung des Mikrobioms sein. In der vorliegenden Übersicht werden die Veränderungen des Mikrobioms und deren Auswirkungen vorgestellt. Auch Ideen für eine Beeinflussung des Mikrobioms werden diskutiert.
-
Literatur
- 1 Qin J, Li R, Raes J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010; 464: 59-65 doi:10.1038/nature08821
- 2 Gevers D, Knight R, Petrosino JF. et al. The Human Microbiome Project: a community resource for the healthy human microbiome. PLoS Biol 2012; 10: e1001377 doi:10.1371/journal.pbio.1001377
- 3 Turnbaugh PJ, Ley RE, Mahowald MA. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006; 444: 1027-1031 doi:10.1038/nature05414
- 4 Tang WH, Wang Z, Levison BS. et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med 2013; 368: 1575-1584 doi:10.1056/NEJMoa1109400
- 5 Hill MJ. Intestinal flora and endogenous vitamin synthesis. Eur J Cancer Prev 1997; 6 (Suppl. 01) S43-S45
- 6 Hooper LV, Midtvedt T, Gordon JI. How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu Rev Nutr 2002; 22: 283-307 doi:10.1146/annurev.nutr.22.011602.092259
- 7 Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 2012; 486: 207-214 doi:10.1038/nature11234
- 8 Ramezani A, Raj DS. The gut microbiome, kidney disease, and targeted interventions. J Am Soc Nephrol 2014; 25: 657-670 doi:10.1681/ASN.2013080905
- 9 Vaziri ND, Wong J, Pahl M. et al. Chronic kidney disease alters intestinal microbial flora. Kidney Int 2013; 83: 308-315 doi:10.1038/ki.2012.345
- 10 Hida M, Aiba Y, Sawamura S. et al. Inhibition of the accumulation of uremic toxins in the blood and their precursors in the feces after oral administration of Lebenin, a lactic acid bacteria preparation, to uremic patients undergoing hemodialysis. Nephron 1996; 74: 349-355
- 11 Wu MJ, Chang CS, Cheng CH. et al. Colonic transit time in long-term dialysis patients. Am J Kidney Dis 2004; 44: 322-327
- 12 Wandersman C, Delepelaire P. Bacterial iron sources: from siderophores to hemophores. Annu Rev Microbiol 2004; 58: 611-647 doi:10.1146/annurev.micro.58.030603.123811
- 13 Jernberg C, Lofmark S, Edlund C. et al. Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiology 2010; 156: 3216-3223 doi:10.1099/mic.0.040618–0
- 14 Einheber A, Carter D. The role of the microbial flora in uremia. I. Survival times of germfree, limited-flora, and conventionalized rats after bilateral nephrectomy and fasting. J Exp Med 1966; 123: 239-250
- 15 Aronov PA, Luo FJ, Plummer NS. et al. Colonic contribution to uremic solutes. J Am Soc Nephrol 2011; 22: 1769-1776 doi:10.1681/ASN.2010121220
- 16 Wikoff WR, Anfora AT, Liu J. et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci U S A 2009; 106: 3698-3703 doi:10.1073/pnas.0812874106
- 17 Gibson SA, McFarlan C, Hay S. et al. Significance of microflora in proteolysis in the colon. Appl Environ Microbiol 1989; 55: 679-683
- 18 van Haard PM. Chromatography of urinary indole derivatives. J Chromatogr 1988; 429: 59-94
- 19 Lin CJ, Chen HH, Pan CF. et al. p-Cresylsulfate and indoxyl sulfate level at different stages of chronic kidney disease. J Clin Lab Anal 2011; 25: 191-197 doi:10.1002/jcla.20456
- 20 Wu IW, Hsu KH, Lee CC. et al. p-Cresyl sulphate and indoxyl sulphate predict progression of chronic kidney disease. Nephrol Dial Transplant 2011; 26: 938-947 doi:10.1093/ndt/gfq580
- 21 Motojima M, Hosokawa A, Yamato H. et al. Uremic toxins of organic anions up-regulate PAI-1 expression by induction of NF-kappaB and free radical in proximal tubular cells. Kidney Int 2003; 63: 1671-1680 doi:10.1046/j.1523–1755.2003.00906.x
- 22 Barreto FC, Barreto DV, Liabeuf S. et al. European Uremic Toxin Work Group (EUTox). Serum indoxyl sulfate is associated with vascular disease and mortality in chronic kidney disease patients. Clin J Am Soc Nephrol 2009; 4: 1551-1558 doi:10.2215/CJN.03980609
- 23 Yamamoto H, Tsuruoka S, Ioka T. et al. Indoxyl sulfate stimulates proliferation of rat vascular smooth muscle cells. Kidney Int 2006; 69: 1780-1785 doi:10.1038/sj.ki.5000340
- 24 Niwa T, Takeda N, Tatematsu A. et al. Accumulation of indoxyl sulfate, an inhibitor of drug-binding, in uremic serum as demonstrated by internal-surface reversed-phase liquid chromatography. Clin Chem 1988; 34: 2264-2267
- 25 De Smet R, Dhondt A, Eloot S. et al. Effect of the super-flux cellulose triacetate dialyser membrane on the removal of non-protein-bound and protein-bound uraemic solutes. Nephrol Dial Transplant 2007; 22: 2006-2012 doi:10.1093/ndt/gfm065
- 26 Dou L, Sallee M, Cerini C. et al. The cardiovascular effect of the uremic solute indole-3 acetic acid. J Am Soc Nephrol 2015; 26: 876-887 doi:10.1681/ASN.2013121283
- 27 de Loor H, Bammens B, Evenepoel P. et al. Gas chromatographic-mass spectrometric analysis for measurement of p-cresol and its conjugated metabolites in uremic and normal serum. Clin Chem 2005; 51: 1535-1538 doi:10.1373/clinchem.2005.050781
- 28 Mutsaers HA, Wilmer MJ, van den Heuvel LP. et al. Basolateral transport of the uraemic toxin p-cresyl sulfate: role for organic anion transporters?. Nephrol Dial Transplant 2011; 26: 4149 doi:10.1093/ndt/gfr562
- 29 Watanabe H, Miyamoto Y, Honda D. et al. p-Cresyl sulfate causes renal tubular cell damage by inducing oxidative stress by activation of NADPH oxidase. Kidney Int 2013; 83: 582-592 doi:10.1038/ki.2012.448
- 30 Meijers BK, Claes K, Bammens B. et al. p-Cresol and cardiovascular risk in mild-to-moderate kidney disease. Clin J Am Soc Nephrol 2010; 5: 1182-1189 doi:10.2215/CJN.07971109
- 31 Jankowski J, van der Giet M, Jankowski V. et al. Increased plasma phenylacetic acid in patients with end-stage renal failure inhibits iNOS expression. J Clin Invest 2003; 112: 256-264 doi:10.1172/JCI15524
- 32 Schmidt S, Westhoff TH, Krauser P. et al. The uraemic toxin phenylacetic acid impairs macrophage function. Nephrol Dial Transplant 2008; 23: 3485-3493 doi:10.1093/ndt/gfn266
- 33 Schmidt S, Westhoff TH, Krauser P. et al. The uraemic toxin phenylacetic acid increases the formation of reactive oxygen species in vascular smooth muscle cells. Nephrol Dial Transplant 2008; 23: 65-71 doi:10.1093/ndt/gfm475
- 34 Freudenberg MA, Tchaptchet S, Keck S. et al. Lipopolysaccharide sensing an important factor in the innate immune response to Gram-negative bacterial infections: benefits and hazards of LPS hypersensitivity. Immunobiology 2008; 213: 193-203 doi: 10.1016/j.imbio.2007.11.008
- 35 Eggesbo JB, Hjermann I, Ovstebo R. et al. LPS induced procoagulant activity and plasminogen activator activity in mononuclear cells from persons with high or low levels of HDL lipoprotein. Thromb Res 1995; 77: 441-452
- 36 Poesen R, Ramezani A, Claes K. et al. Associations of Soluble CD14 and Endotoxin with Mortality, Cardiovascular Disease, and Progression of Kidney Disease among Patients with CKD. Clin J Am Soc Nephrol 2015; 10: 1525-1533 doi:10.2215/CJN.03100315
- 37 de Preter V, Vanhoutte T, Huys G. et al. Baseline microbiota activity and initial bifidobacteria counts influence responses to prebiotic dosing in healthy subjects. Aliment Pharmacol Ther 2008; 27: 504-513 doi:10.1111/j.1365–2036.2007.03588.x
- 38 Wang IK, Wu YY, Yang YF. et al. The effect of probiotics on serum levels of cytokine and endotoxin in peritoneal dialysis patients: a randomised, double-blind, placebo-controlled trial. Benef Microbes 2015; 6: 423-430 doi:10.3920/BM2014.0088
- 39 Nakabayashi I, Nakamura M, Kawakami K. et al. Effects of synbiotic treatment on serum level of p-cresol in haemodialysis patients: a preliminary study. Nephrol Dial Transplant 2011; 26: 1094-1098 doi:10.1093/ndt/gfq624
- 40 Santisteban MM, Qi Y, Zubcevic J. et al. Hypertension-Linked Pathophysiological Alterations in the Gut. Circ Res 2017; 120: 312-323 doi:10.1161/CIRCRESAHA.116.309006
- 41 Schulman G, Berl T, Beck GJ. et al. Randomized Placebo-Controlled EPPIC Trials of AST-120 in CKD. J Am Soc Nephrol 2015; 26: 1732-1746 doi: 10.1681/ASN.2014010042
- 42 Prakash S, Chang TM. Microencapsulated genetically engineered live E. coli DH5 cells administered orally to maintain normal plasma urea level in uremic rats. Nat Med 1996; 2: 883-887