neuroreha 2017; 09(04): 160-166
DOI: 10.1055/s-0043-120317
Schwerpunkt Robotik
Georg Thieme Verlag KG Stuttgart · New York

Elektromechanisch- und roboterassistiertes Training der oberen Extremität

Jan Mehrholz
,
Bernhard Elsner
,
Simone Thomas
Further Information

Publication History

Publication Date:
08 December 2017 (online)

Zusammenfassung

In der Folge eines Schlaganfalls leidet die Mehrzahl der Patienten an einer Armparese. Der Bedarf an Neurorehabilitation ist groß. Elektromechanisch- und roboterassistierte Geräte können hier unterstützend zum Einsatz kommen. Auf welchem Stand sind die Ansätze heute und was ist für die nahe Zukunft zu erwarten?

 
  • Literatur

  • 1 Abdullah HA, Tarry C, Lambert C. et al. Results of clinicians using a therapeutic robotic system in an inpatient stroke rehabilitation unit. Journal of NeuroEngineering and Rehabilitation 2011; 8: 50
  • 2 Amirabdollahian F, Loureiro R, Gradwell E. et al. Multivariate analysis of the Fugl-Meyer outcome measures assessing the effectiveness of GENTLE/S robot-mediated stroke therapy. Journal of NeuroEngineering and Rehabilitation 2007; 4: 4
  • 3 Ang KK, Guan C, Phua KS. et al. Brain-computer interface-based robotic end effector system for wrist and hand rehabilitation: Results of a three-armed randomized controlled trial for chronic stroke. Frontiers in Neuroengineering 2014; 7: 30
  • 4 Aurich-Schuler T, Warken B, Graser JV. et al. Practical recommendations for robot-assisted treadmill therapy (Lokomat) in children with cerebral palsy: Indications, goal setting, and clinical implementation within the WHO-ICF framework. Neuropediatrics 2015; 248-260
  • 5 Aurich-Schuler T, Grob F, van Hedel HJA. et al. Can Lokomat therapy with children and adolescents be improved? An adaptive clinical pilot trial comparing Guidance force, Path control, and FreeD. Journal of NeuroEngineering and Rehabilitation 2017; 76
  • 6 Barker RN, Brauer SG. Upper limb recovery after stroke: The stroke survivors’ perspective. Disability and Rehabilitation 2005; 20: 1213-1223
  • 7 Bayon C, Raya R, Lerma S. Robotic therapies for children with cerebral palsy: A systematic review. Translational Biomedicine 2016; 1
  • 8 Bertani R, Melegari C, De Cola MC. et al. Effects of robot-assisted upper limb rehabilitation in stroke patients: A systematic review with meta-analysis. Neurol Sci. 2017
  • 9 Borboni A, Mor M, Faglia R. Gloreha-hand robotic rehabilitation: Design, mechanical model, and experiments. J Dyn Sys Meas Control 2016; 138: 111003
  • 10 Brokaw EB, Nichols D, Holley RJ. et al. Robotic therapy provides a stimulus for upper limb motor recovery after stroke that is complementary to and distinct from conventional therapy. Neurorehabilitation and Neural Repair 2014; 4: 367-376
  • 11 Brütsch K, Schuler T, Koenig A. et al. Influence of virtual reality soccer game on walking performance in robotic assisted gait training for children. J Neuroeng Rehabil. 2010
  • 12 Burgar C, Lum P, Shor P. et al. Development of robots for rehabilitation therapy: The Palo Alto VA/Stanford experience. Journal of Rehabilitation Research and Development 2000; 6: 663-673
  • 13 Burgar CG, Lum PS, Scremin AM. et al. Robot-assisted upper-limb therapy in acute rehabilitation setting following stroke: Department of Veterans Affairs multisite clinical trial. Journal of Rehabilitation Research and Development 2011; 4: 445-458
  • 14 Chen YP, Howard AM. Effects of robotic therapy on upper-extremity function in children with cerebral palsy: A systematic review. Dev Neurorehabil 2016; 1: 64-71
  • 15 Conroy SS, Whitall J, Dipietro L. et al. Effect of gravity on robot-assisted motor training after chronic stroke: A randomized trial. Archives of Physical Medicine and Rehabilitation 2011; 11: 1754-1761
  • 16 Coote S, Stokes EK. The effect of robot mediated therapy on upper extremity function following stroke – initial results. Irish Journal of Medical Science 2003; 2: 26-27
  • 17 Daly JJ, Hogan N, Perepezko EM. et al. Response to upper-limb robotics and functional neuromuscular stimulation following stroke. Journal of Rehabilitation Research and Development 2005; 6: 723-736
  • 18 Dehem S, Gilliaux M, Lejeune T. et al. Assessment of upper limb spasticity in stroke patients using the robotic device REAplan. J Rehabil Med 2017; 7: 565-571
  • 19 Fazekas G, Horvath M, Troznai T. et al. Robot-mediated upper limb physiotherapy for patients with spastic hemiparesis: A preliminary study. Journal of Rehabilitation Medicine 2007; 7: 580-582
  • 20 Gilliaux M, Lejeune TM, Detreumbleur C. et al. Using the robotic device REAplan as a valid, reliable, and sensitive tool to quantify upper limb impairments in stroke patients. J Rehabil Med 2014; 2: 117-125
  • 21 Gilliaux M, Renders A, Dispa D. et al. Upper limb robot-assisted therapy in cerebral palsy: A single-blind randomized controlled trial. Neurorehabil Neural Repair 2015; 2: 183-192
  • 22 Graser JV. Spezifische Computer-Ansätze für Kinder: Die Rolle der Reihenfolge beim motorischen Lernen. Neuroreha 2017; 9
  • 23 Hesse S, Schmidt H, Werner C. et al. Upper and lower extremity robotic devices for rehabilitation and for studying motor control. Current Opinion in Neurology 2003; 6: 705-710
  • 24 Hesse S, Schulte-Tigges G, Konrad M. et al. Robot-assisted arm trainer for the passive and active practice of bilateral forearm and wrist movements in hemiparetic subjects. Arch Phys Med Rehabil 2003; 6: 915-920
  • 25 Hesse S, Werner C, Pohl M. et al. Computerized arm training improves the motor control of the severely affected arm after stroke: A single-blinded randomized trial in two centers. Stroke 2005; 9: 1960-1966
  • 26 Hesse S, Buschfort R, Hess A. et al. Effect on arm function and cost of robot-assisted group therapy in subacute patients with stroke and a moderately to severely affected arm: A randomized controlled trial [German]. Neurologie und Rehabilitation 2014; 67-73
  • 27 Hesse S, Hess A, Weerner CC. et al. Effect on arm function and cost of robot-assisted group therapy in subacute patients with stroke and a moderately to severely affected arm: A randomized controlled trial. Clin Rehabil 2014; 7: 637-647
  • 28 Hollenstein C, Cabri C. Zusatztherapie mit computerunterstütztem Trainingssystem im Vergleich zu ergotherapeutischer Armgruppentherapie. Neuroreha 2011; 1: 40-42
  • 29 Housman SJ, Scott KM, Reinkensmeyer DJ. A randomized controlled trial of gravity-supported, computer-enhanced arm exercise for individuals with severe hemiparesis. Neurorehabilitation and Neural Repair 2009; 5: 505-514
  • 30 Hsieh YW, Wu CY, Liao WW. et al. Effects of treatment intensity in upper limb robot-assisted therapy for chronic stroke: A pilot randomized controlled trial. Neurorehabilitation and Neural Repair 2011; 6: 503-511
  • 31 Hsieh YW, Lin KC, Horng YS. et al. Sequential combination of robot-assisted therapy and constraint-induced therapy in stroke rehabilitation: A randomized controlled trial. Journal of Neurology 2014; 5: 1037-1045
  • 32 Hwang CH, Seong JW, Son DS. Individual finger synchronized robot-assisted hand rehabilitation in subacute to chronic stroke: A prospective randomized clinical trial of efficacy. Clinical Rehabilitation 2012; 696-704
  • 33 Jørgensen HS, Nakayama H. Raaschou. et al. Stroke. Neurologic and functional recovery. The Copenhagen Stroke Study. Physical Medicine and Rehabilitation Clinics of North America 1999; 4: 887-906
  • 34 Kahn L, Zyman M, Rymer W, Reinkensmeyer D. Robot-assisted reaching exercise promotes arm recovery in chronic hemiparetic stroke: A randomized controlled pilot study. Journal of NeuroEngineering and Rehabilitation 2006; 12: 12
  • 35 Klamroth-Marganska V, Blanco J, Campen J. et al. Three-dimensional, task-specific robot therapy of the arm after stroke: A multicentre, parallel-group randomised trial. The Lancet Neurology 2014; 2: 159-166
  • 36 Koenig A, Brütsch K, Zimmerli L. et al. Virtual environments increase participation of children with cerebral palsy in robot-aided treadmill training. Virtual Rehabilitation. 2008
  • 37 Koenig A, Wellner M, Koneke S. et al. Virtual gait training for children with cerebral palsy using the Lokomat gait orthosis. Stud Health Technol Inform. 2008
  • 38 Krebs HI, Hogan N, Aisen ML. et al. Robot-aided neurorehabilitation. IEEE Transactions on Rehabilitation Engineering 1998; 1: 75-87
  • 39 Krebs HI, Caurin G, Battistella L. Rehabilitation robotics, orthotics and prosthetics for the upper extremity. In: Selzer M, Clarke S, Cohen L. et al., eds. Textbook of Neural Repair and Rehabilitation. New York: Cambridge University Press; 2014: 177-197
  • 40 Kutner NG, Zhang R, Butler AJ. et al. Quality-of-life change associated with robotic-assisted therapy to improve hand motor function in patients with subacute stroke: A randomized clinical trial. Physical Therapy 2010; 4: 493-504
  • 41 Kwakkel G, Kollen BJ, Krebs HI. Effects of robot-assisted therapy on upper limb recovery after stroke: A systematic review. Neurorehabilitation and Neural Repair 2008; 2: 111-121
  • 42 Leon D, Cortes M, Elder JHK. et al. tDCS does not enhance the effects of robot-assisted gait training in patient with subacute stroke. Restor Neurol Neurosci 2017; Jul 6 DOI: 10.3233/RNN-170734
  • 43 Liao WW, Wu CY, Hsieh YW. et al. Effects of robot-assisted upper limb rehabilitation on daily function and real-world arm activity in patients with chronic stroke: A randomized controlled trial. Clinical Rehabilitation 2012; 111-120
  • 44 Lo AC, Guarino PD, Richards LG. et al. Robot-assisted therapy for long-term upper-limb impairment after stroke. The New England Journal of Medicine 2010; 19: 1772-1783
  • 45 Lum PS, Burgar CG, Shor PC. et al. Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Archives of Physical Medicine and Rehabilitation 2002; 7: 952-959
  • 46 Lum PS, Burgar CG, Van der Loos M. et al. MIME robotic device for upper-limb neurorehabilitation in subacute stroke subjects: A follow-up study. Journal of Rehabilitation Research and Development 2006; 5: 631-642
  • 47 Masiero S, Celia A, Rosati G. et al. Robotic-assisted rehabilitation of the upper limb after acute stroke. Archives of Physical Medicine and Rehabilitation 2007; 2: 142-149
  • 48 Masiero S, Armani M, Rosati G. Upper-limb robot-assisted therapy in rehabilitation of acute stroke patients: Focused review and results of new randomized controlled trial. Journal of Rehabilitation Research and Development 2011; 4: 355-366
  • 49 Mayr A, Kofler M, Saltuari L. ARMOR: An electromechanical robot for upper limb training following stroke. A prospective randomised controlled pilot study. Handchirurgie, Mikrochirurgie, Plastische Chirurgie 2008; 1: 66-73
  • 50 McCabe J, Monkiewicz M, Holcomb J. et al. Comparison of robotics, functional electrical stimulation, and motor learning methods for treatment of persistent upper extremity dysfunction after stroke: A randomized controlled trial. Archives of Physical Medicine and Rehabilitation 2015; 6: 981-990
  • 51 Mehrholz J, Platz T, Kugler J. et al. Electromechanical-assisted training for improving upper limb function and disability after stroke. Cochrane Database Syst Rev 2008; 4 Art. No.: CD006876
  • 52 Mehrholz J, Platz T, Kugler J. et al. Electromechanical-assisted training for improving upper limb function and disability after stroke [protocol]. Cochrane Database Syst Rev 2008; 1 Art. No.: CD006876. DOI: 10.1002/14651858.CD006876
  • 53 Mehrholz J, Hädrich A, Platz T. et al. Electromechanical and robot-assisted arm training for improving generic activities of daily living, arm function, and arm muscle strength after stroke [update]. Cochrane Database Syst Rev 2012; 6 Art. No.: CD006876
  • 54 Mehrholz J, Pohl M, Platz T. et al. Electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database of Systematic Reviews 2015; 11 Art. No.: CD006876. DOI: 10.1002/14651858.CD006876.pub4
  • 55 Mehrholz J, Kugler J, Elsner B. Network meta-analysis on randomized trials focusing on the effects of interventions for improving ambulation and gait related outcomes after stroke [Netzwerk Meta-Analyse zu den Effekten von Interventionen zur Verbesserung der Gehfähigkeit und von Gangparametern nach Schlaganfall]. Deutsches Ärzteblatt. 2017 invited manuscript in preparation, PROSPERO: CRD42017056820
  • 56 Mehrholz J, Kugler J, Elsner B. Protocol of a systematic review with network meta-analysis on randomized trials focusing on the effects of robot-assisted training for improving upper limb capacity and function after stroke PROSPERO: International prospective register of systematic reviews 2017. Im Internet: www.crd.york.ac.uk/CRDWeb/ShowRecord.asp?ID=75411 Stand: 29.08.2017
  • 57 Meyer-Heim A, van Hedel HJ. Robot-assisted and computer-enhanced therapies for children with cerebral palsy: Current state and clinical implementation. Semin Pediatr Neurol 2013; 2: 139-145
  • 58 Mills EJ, Thorlund K, Ioannidis JP. Demystifying trial networks and network meta-analysis. BMJ 2013; f2914
  • 59 Nakayama H, Jørgensen HS, Raaschou HO. et al. Recovery of upper extremity function in stroke patients: The Copenhagen Stroke Study. Archives of Physical Medicine and Rehabilitation 1994; 4: 394-398
  • 60 Prange GB, Jannink MJ, Groothuis-Oudshoorn CG. et al. Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke. Journal of Rehabilitation Research and Development 2006; 2: 171-184
  • 61 Rabadi M, Galgano M, Lynch D. et al. A pilot study of activity-based therapy in the arm motor recovery post stroke: A randomized controlled trial. Clinical Rehabilitation 2008; 1071-1082
  • 62 Reinkensmeyer DJ, Kahn LE, Averbuch M. et al. Understanding and treating arm movement impairment after chronic brain injury: Progress with the ARM Guide. Journal of Rehabilitation Research and Development 2000; 6: 653-662
  • 63 Riener R, Nef T, Colombo G. Robot-aided neurorehabilitation of the upper extremities. Medical and Biological Engineering and Computing 2005; 1: 2-10
  • 64 Rodgers H, Shaw L, Bosomworth H. et al. Robot assisted training for the upper limb after stroke (RATULS): Study protocol for a randomised controlled trial. Trials 2017; 1: 340
  • 65 Sale P, Franceschini M, Mazzoleni S. et al. Effects of upper limb robot-assisted therapy on motor recovery in subacute stroke patients. Journal of NeuroEngineering and Rehabilitation 2014; 104: 104
  • 66 Susanto EA, Tong RK, Ockenfeld C. et al. Efficacy of robot-assisted fingers training in chronic stroke survivors: A pilot randomized-controlled trial. Journal of NeuroEngineering and Rehabilitation 2015; 1: 42
  • 67 Timmermans AA, Lemmens RJM, Monfrance M. et al. Effects of task-oriented robot training on arm function, activity, and quality of life in chronic stroke patients: A randomized controlled trial. Journal of NeuroEngineering and Rehabilitation 2014; 45: 45
  • 68 Tomic TJ, Savic AM, Vidakovic AS. et al. ArmAssist robotic system versus matched conventional therapy for poststroke upper limb rehabilitation: A randomized clinical trial. Biomed Res Int 2017; 7659893
  • 69 Vanoglio F, Bernocchi P, Mule C. et al. Feasibility and efficacy of a robotic device for hand rehabilitation in hemiplegic stroke patients: A randomized pilot controlled study. Clin Rehabil 2017; 3: 351-360
  • 70 Veerbeek JM, Langbroek-Amersfoort AC, van Wegen EE. et al. Effects of robot-assisted therapy for the upper limb after stroke. Neurorehabil Neural Repair 2017; 2: 107-121
  • 71 Villafane JH, Taveggia G, Galeri S. et al. Efficacy of short-term robot-assisted rehabilitation in patients with hand paralysis after stroke: A randomized clinical trial. Hand (N Y). 2017 1558944717692096
  • 72 Volpe BT, Krebs HI, Hogan N. et al. A novel approach to stroke rehabilitation: Robot-aided sensorimotor stimulation. Neurology 2000; 10: 1938-1944
  • 73 Volpe BT, Lynch D, Rykman-Berland A. et al. Intensive sensorimotor arm training mediated by therapist or robot improves hemiparesis in patients with chronic stroke. Neurorehabilitation and Neural Repair 2008; 3: 305-310
  • 74 Wu CY, Yang CL, Chuang LL. et al. Effect of therapist-based versus robot-assisted bilateral arm training on motor control, functional performance, and quality of life after chronic stroke: A clinical trial. Physical Therapy 2012; 8: 1006-1016
  • 75 Yoo DH, Cha YJ, Kim SK. et al. Effect of three-dimensional robot-assisted therapy on upper limb function of patients with stroke. Journal of Physical Therapy Science 2013; 25: 407-409