Rofo 2018; 190(01): 31-41
DOI: 10.1055/s-0043-118127
Review
© Georg Thieme Verlag KG Stuttgart · New York

CT and MRI Techniques for Imaging Around Orthopedic Hardware

CT- und MRT-Bildgebung bei orthopädischen Implantaten
Thuy Duong Do
1   Department of Clinical Radiology, University of Heidelberg, Germany
,
Reto Sutter
2   Radiology, Uniklinik Balgrist, Zurich, Switzerland
,
Stephan Skornitzke
1   Department of Clinical Radiology, University of Heidelberg, Germany
,
Marc-André Weber
1   Department of Clinical Radiology, University of Heidelberg, Germany
› Author Affiliations
Further Information

Publication History

30 November 2016

25 July 2017

Publication Date:
21 September 2017 (online)

Abstract

Orthopedic hardware impairs image quality in cross-sectional imaging. With an increasing number of orthopedic implants in an aging population, the need to mitigate metal artifacts in computed tomography and magnetic resonance imaging is becoming increasingly relevant. This review provides an overview of the major artifacts in CT and MRI and state-of-the-art solutions to improve image quality. All steps of image acquisition from device selection, scan preparations and parameters to image post-processing influence the magnitude of metal artifacts. Technological advances like dual-energy CT with the possibility of virtual monochromatic imaging (VMI) and new materials offer opportunities to further reduce artifacts in CT and MRI. Dedicated metal artifact reduction sequences contain algorithms to reduce artifacts and improve imaging of surrounding tissue and are essential tools in orthopedic imaging to detect postoperative complications in early stages.

Key points

  • Tissues around orthopaedic hardware can still be well visualised despite metal artifacts.

  • Artefact reduction in CT: acquisition parameters, iterative reconstruction, Dual-energy CT and VMI.

  • Artefact reduction in MRI: choice of device, sequences, acquisition parameters and MARS

Citation Format

  • Do TD, Sutter R, Skornitzke S et al. CT and MRI Techniques for Imaging Around Orthopedic Hardware. Fortschr Röntgenstr 2018; 190: 31 – 41

Zusammenfassung

Orthopädische Implantate verringern die Bildqualität in der Schnittbildgebung. Bei steigendem Einsatz von orthopädischen Implantaten in einer alternden Bevölkerung ist eine Metallartefaktreduktion von zunehmender Bedeutung. Im folgenden Review möchten wir einen Überblick über die wesentlichen Artefakte in der Computertomografie und Magnetresonanztomografie sowie die neuesten Standards zur Verbesserung der Bildqualität geben. Alle Schritte der Bildakquisition von Gerätewahl über Scanvorbereitungen und -parameter bis hin zur Bildverarbeitung beeinflussen das Ausmaß der Metallartefakte. Technische Fortschritte wie die Dual-energy-Computertomografie mit der Option der Virtuellen monochromatischen Bildgebung sowie neue Implantatmaterialien bieten weitere Möglichkeiten der Metallartefaktreduktion in CT und MRT. Dezidierte Metallartefakt-Sequenzen beinhalten Algorithmen zur Artefaktreduktion und zur Verbesserung der Bildqualität des umgebenden Gewebes und sind essenzielle Werkzeuge in der orthopädischen Bildgebung zur frühzeitigen Detektion von postoperativen Komplikationen.

Kernaussagen:

  • Periprothetisches Weichteilgewebe können trotz Metallartefakte gut visualisiert werden

  • Artefaktreduktion in der Computertomographie: Akquisitionsparameter, iterative Rekonstruktionen, Dual-energy CT und VMS

  • Artefaktreduktion im MRT: Gerätewahl, Sequenzen, Akquisitionsparameter und MARS

 
  • References

  • 1 Buckwalter KA, Lin C, Ford JM. Managing postoperative artifacts on computed tomography and magnetic resonance imaging. Semin Musculoskelet Radiol 2011; 15: 309-319
  • 2 Barrett JF, Keat N. Artifacts in CT: recognition and avoidance. Radiographics 2004; 24: 1679-1691
  • 3 Boas FE, Fleischmann D. CT artifacts: causes and reduction techniques. Imaging in Medicine 2012; 4: 229-240
  • 4 De Man B, Nuyts J, Dupont P. et al. Metal streak artifacts in X-ray computed tomography: a simulation study. In: Nuclear Science Symposium, 1998 Conference Record 1998 IEEE. IEEE; 1998: 1860-1865
  • 5 Engel KJ, Herrmann C, Zeitler G. X-ray scattering in single- and dual-source CT. Med Phys 2008; 35: 318-332
  • 6 Haramati N, Staron RB, Mazel-Sperling K. et al. CT scans through metal scanning technique versus hardware composition. Comput Med Imaging Graph 1994; 18: 429-434
  • 7 Wang JC, Yu WD, Sandhu HS. et al. A comparison of magnetic resonance and computed tomographic image quality after the implantation of tantalum and titanium spinal instrumentation. Spine (Phila Pa 1976) 1998; 23: 1684-1688
  • 8 Douglas-Akinwande AC, Buckwalter KA, Rydberg J. et al. Multichannel CT: evaluating the spine in postoperative patients with orthopedic hardware. Radiographics 2006; 26 (Suppl. 01) S97-S110
  • 9 Vogtmeier G, Dorscheid R, Engel KJ. et al. Two-dimensional anti-scatter grids for computed tomography detectors. In: Medical imaging: International Society for Optics and Photonics. 2008. 691359-691359-691311
  • 10 Stiller W. Principles of multidetector-row computed tomography : part 1. Technical design and physicotechnical principles. Radiologe 2011; 51: 625-637 quiz 638–629
  • 11 Meyer E, Raupach R, Lell M. et al. Frequency split metal artifact reduction (FSMAR) in computed tomography. Med Phys 2012; 39: 1904-1916
  • 12 Healthcare P. Metal Artifact Reduction for Orthopedic Implants (O-MAR). Andover, Massachusetts: White Paper, Philips CT Clinical Science; 2012
  • 13 Morsbach F, Bickelhaupt S, Wanner GA. et al. Reduction of metal artifacts from hip prostheses on CT images of the pelvis: value of iterative reconstructions. Radiology 2013; 268: 237-244
  • 14 Kotsenas AL, Michalak GJ, DeLone DR. et al. CT Metal Artifact Reduction in the Spine: Can an Iterative Reconstruction Technique Improve Visualization?. American journal of neuroradiology 2015; 36: 2184-2190
  • 15 Geyer LL, Schoepf UJ, Meinel FG. et al. State of the Art: Iterative CT Reconstruction Techniques. Radiology 2015; 276: 339-357
  • 16 Malan DF, Botha CP, Kraaij G. et al. Measuring femoral lesions despite CT metal artefacts: a cadaveric study. Skeletal Radiol 2012; 41: 547-555
  • 17 Pessis E, Campagna R, Sverzut JM. et al. Virtual monochromatic spectral imaging with fast kilovoltage switching: reduction of metal artifacts at CT. Radiographics 2013; 33: 573-583
  • 18 Matsumoto K, Jinzaki M, Tanami Y. et al. Virtual monochromatic spectral imaging with fast kilovoltage switching: improved image quality as compared with that obtained with conventional 120-kVp CT. Radiology 2011; 259: 257-262
  • 19 Coupal TM, Mallinson PI, McLaughlin P. et al. Peering through the glare: using dual-energy CT to overcome the problem of metal artefacts in bone radiology. Skeletal Radiol 2014; 43: 567-575
  • 20 Schenzle JC, Sommer WH, Neumaier K. et al. Dual energy CT of the chest: how about the dose?. Invest Radiol 2010; 45: 347-353
  • 21 Henzler T, Fink C, Schoenberg SO. et al. Dual-energy CT: radiation dose aspects. Am J Roentgenol 2012; 199: S16-S25
  • 22 Graser A, Johnson TR, Hecht EM. et al. Dual-energy CT in patients suspected of having renal masses: can virtual nonenhanced images replace true nonenhanced images?. Radiology 2009; 252: 433-440
  • 23 Ponnappan RK, Serhan H, Zarda B. et al. Biomechanical evaluation and comparison of polyetheretherketone rod system to traditional titanium rod fixation. The Spine Journal 2009; 9: 263-267
  • 24 Zimel MN, Hwang S, Riedel ER. et al. Carbon fiber intramedullary nails reduce artifact in postoperative advanced imaging. Skeletal Radiol 2015; 44: 1317-1325
  • 25 Aissa J, Thomas C, Sawicki LM. et al. Iterative metal artefact reduction in CT: can dedicated algorithms improve image quality after spinal instrumentation?. Clin Radiol 2017; 72: 428 e427-428 e412
  • 26 Weiss J, Schabel C, Bongers M. et al. Impact of iterative metal artifact reduction on diagnostic image quality in patients with dental hardware. Acta Radiol 2017; 58: 279-285
  • 27 Bongers MN, Schabel C, Thomas C. et al. Comparison and Combination of Dual-Energy- and Iterative-Based Metal Artefact Reduction on Hip Prosthesis and Dental Implants. PLoS One 2015; 10: e0143584
  • 28 Wellenberg RH, Boomsma MF, van Osch JA. et al. Low-dose CT imaging of a total hip arthroplasty phantom using model-based iterative reconstruction and orthopedic metal artifact reduction. Skeletal Radiol 2017; 46: 623-632
  • 29 de Jong JJ, Lataster A, van Rietbergen B. et al. Distal radius plate of CFR-PEEK has minimal effect compared to titanium plates on bone parameters in high-resolution peripheral quantitative computed tomography: a pilot study. BMC Med Imaging 2017; 17: 18
  • 30 Hargreaves BA, Worters PW, Pauly KB. et al. Metal-induced artifacts in MRI. Am J Roentgenol 2011; 197: 547-555
  • 31 Graf H, Lauer UA, Berger A. et al. RF artifacts caused by metallic implants or instruments which get more prominent at 3 T: an in vitro study. Magn Reson Imaging 2005; 23: 493-499
  • 32 Ulbrich EJ, Sutter R, Aguiar RF. et al. STIR sequence with increased receiver bandwidth of the inversion pulse for reduction of metallic artifacts. Am J Roentgenol 2012; 199: W735-W742
  • 33 Koch KM, Hargreaves BA, Pauly KB. et al. Magnetic resonance imaging near metal implants. J Magn Reson Imaging 2010; 32: 773-787
  • 34 Muller GM, Mansson S, Muller MF. et al. MR imaging with metal artifact-reducing sequences and gadolinium contrast agent in a case-control study of periprosthetic abnormalities in patients with metal-on-metal hip prostheses. Skeletal Radiol 2014; 43: 1101-1112
  • 35 Cho ZH, Kim DJ, Kim YK. Total inhomogeneity correction including chemical shifts and susceptibility by view angle tilting. Med Phys 1988; 15: 7-11
  • 36 Dillenseger JP, Moliere S, Choquet P. et al. An illustrative review to understand and manage metal-induced artifacts in musculoskeletal MRI: a primer and updates. Skeletal Radiol 2016; 45: 677-688
  • 37 Sutter R, Ulbrich EJ, Jellus V. et al. Reduction of metal artifacts in patients with total hip arthroplasty with slice-encoding metal artifact correction and view-angle tilting MR imaging. Radiology 2012; 265: 204-214
  • 38 Idiyatullin D, Corum C, Park JY. et al. Fast and quiet MRI using a swept radiofrequency. J Magn Reson 2006; 181: 342-349
  • 39 Carl M, Koch K, Du J. MR imaging near metal with undersampled 3D radial UTE-MAVRIC sequences. Magn Reson Med 2013; 69: 27-36
  • 40 Fritz J, Ahlawat S, Demehri S. et al. Compressed Sensing SEMAC: 8-fold Accelerated High Resolution Metal Artifact Reduction MRI of Cobalt-Chromium Knee Arthroplasty Implants. Invest Radiol 2016; 51: 666-676
  • 41 Filli L, Jud L, Luechinger R. et al. Material-Dependent Implant Artifact Reduction Using SEMAC-VAT and MAVRIC: A Prospective MRI Phantom Study. Invest Radiol 2017; DOI: 10.1097/RLI.0000000000000351.
  • 42 Frisch NB, Wessell NM, Taliaferro K. et al. Ultrasound findings in asymptomatic patients with modular metal on metal total hip arthroplasty. Skeletal Radiol 2017; 46: 641-649
  • 43 Muraoka K, Naito M, Nakamura Y. et al. Usefulness of ultrasonography for detection of pseudotumors after metal-on-metal total hip arthroplasty. J Arthroplasty 2015; 30: 879-884
  • 44 Garbuz DS, Hargreaves BA, Duncan CP. et al. The John Charnley Award: Diagnostic accuracy of MRI versus ultrasound for detecting pseudotumors in asymptomatic metal-on-metal THA. Clin Orthop Relat Res 2014; 472: 417-423