Neurology International Open 2017; 01(03): E232-E241
DOI: 10.1055/s-0043-115360
OriginalArticle
© Georg Thieme Verlag KG Stuttgart · New York

A Robotic Ball for Upper-Extremity Training in Stroke Patients: A New Approach in Neurorehabilitation

Tilo Neuendorf
1   Chemnitz University of Technology, Sports medicine/Sports Biology
,
Daniel Zschäbitz
1   Chemnitz University of Technology, Sports medicine/Sports Biology
,
Nico Nitzsche
1   Chemnitz University of Technology, Sports medicine/Sports Biology
,
Henry Schulz
1   Chemnitz University of Technology, Sports medicine/Sports Biology
› Author Affiliations
Further Information

Publication History

Publication Date:
14 September 2017 (online)

Abstract

Background Technology-supported therapy can contribute to the rehabilitation of distinctive upper-extremity symptoms resulting from stroke as neurons have the ability to reorganize. The robotic ball “Sphero 2.0”, an innovative therapeutic exergaming tool, was found to be suitable and hence used in neurorehabilitation for the first time.

Objective The aim of this study was to evaluate the robotic-ball therapy concept and assess possible effects on motor parameters. Patients’ statements regarding the effects on rehabilitation after implementing the therapy concept over several weeks were included in the testing procedure. Furthermore, the study aimed to rate the technical suitability of the robotic ball.

Methods 12 stroke patients (62.3±11.8 years, 170.8±10.9 cm, 82.5±16.6 kg, 6.37±5.53 months post-stroke) underwent 45-min training with the robotic ball, twice a week, over a period of 12 weeks. Regular therapy was complemented with this intervention. Pre and post intervention, grip strength, unilateral dexterity, self-reported disabilities of the arm, shoulder and hand and impairment, cognitive status and technical affinity were assessed.

Results 10 patients were able to complete the training program and achieved significant improvement in grip strength (p=0.007, d=0.51) and unilateral dexterity (p=0.002, d=0.44) along with reduced self-reported disabilities of the arm, shoulder and hand and impairment (p=0.002, d=−1.12). The robotic ball was rated as excellent with 92.3±2.5 out of a maximum 100 points.

Conclusions Patients severely or slightly impaired seemed to benefit less than moderately affected stroke patients. Specific improvements in dealing with activities of daily living contributed to a high motivation for the robotic-ball training. The training content can be adapted to users with heterogeneous impairments. The results of the present study should be confirmed with more patients in a future study with a crossover-design. Keywords: Stroke, motor function, robotic ball, upper extremities, exergaming

 
  • References

  • 1 Wolf SL, Winstein CJ, Miller JP. et al. Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial. JAMA 2006; 296: 2095-2104
  • 2 Schubert F, Lalouschek W. Schlaganfall. In: Lehrner J, Pusswald G, Fertl E, et al., eds. Klinische Neuropsychologie. Grundlagen – Diagnostik – Rehabilitation. Wien: Springer; 2006: 345–356
  • 3 Langhorne P, Coupar F, Pollock A. Motor recovery after stroke: a systematic review. Lancet Neurol 2009; 8: 741-754
  • 4 Hauptmann B. Von der Theorie zur Praxis: Grundlagen prozedualen und motorischen Lernens. In: Dettmers C, Bülau P, Weiller C., eds. Schlaganfall Rehabilitation. Bad Honnef: Hippocampus Verlag; 2007: 25–52
  • 5 Wulf G. Motorisches Lernen: Einflussgrößen und ihre Optimierung. In: Dettmers C, Bülau P, Weiller C., eds. Schlaganfall Rehabilitation. Bad Honnef: Hippocampus Verlag; 2007: 3–24
  • 6 Nadeau SE. A paradigm shift in neurorehabilitation. Lancet Neurol 2002; 1: 126-130
  • 7 Taub E, Uswatte G, Elbert T. New treatments in neurorehabiliation founded on basic research. Nat Rev Neurosci 2002; 3: 228-236
  • 8 Deutsche Gesellschaft für Neurorehabilitation (DGNR) . S2e-Leitlinien der DGNR zur motorischen Rehabilitation der oberen Extremität nach Schlaganfall. Neurologie & Rehabilitation 2009; 15: 71-160
  • 9 Hebb DO. The organization behavior: A neuropsychological theory. New York: Wiley & Sons; 1949
  • 10 Johansson BB. Brain plasticity and stroke rehabilitation. Stroke 2000; 31: 223-230
  • 11 Liepert J, Tegenthoff M, Malin J-P. Changes of cortical motor area size during immobilization. Electroencephalogr Clin Neurophysiol 1995; 97: 382-386
  • 12 Kopp B, Kunkel A, Münickel W. et al. Plasticity in the motor system related to therapy-induced improvement of movement after stroke. Neuroreport 1999; 10: 807-810
  • 13 Liepert J, Bauder H, Miltner WH. et al. Treatment-induced cortical reorganization after stroke in humans. Stroke 2000; 31: 1210-1216
  • 14 Schaechter JD. Motor rehabilitation and brain plasticity after hemiparetic stroke. Prog Neurobiol 2004; 73: 61-72
  • 15 Crosbie JH, Lennon S, Basford JR. et al. Virtual reality in stroke rehabilitation: still more virtual than real. Disabil Rehabil 2007; 29: 1139-1146 discussion 1147–1152
  • 16 Laver KE, George S, Thomas S. et al. Virtual reality for stroke rehabilitation. Cochrane Database Syst Rev 2015; 2: 1-110
  • 17 Lohse KR, Hilderman CG, Cheung KL. et al. Virtual reality therapy for adults post-stroke: a systematic review and meta-analysis exploring virtual environments and commercial games in therapy. PloS One 2014; 9: e93318
  • 18 Loureiro RC, Harwin WS, Nagai K. et al. Advances in upper limb stroke rehabilitation: a technology push. Med Biol Eng Comput 2011; 49: 1103-1118
  • 19 Prashun P, Hadley G, Gatzidis C. et al. Investigating the trend of virtualrReality-based Stroke Rehabilitation Systems. International Conference Information Visualisation 2010; 641-647
  • 20 Rahman S, Shaheen AA. Virtual reality use in motor rehabilitation of neurological disorders: a systematic review. Middle East J Sci Res 2011; 7: 63-70
  • 21 Saposnik G, Levin M. ; Outcome Research Canada (SORCan) Working Group. Virtual reality in stroke rehabilitation a meta-analysis and implications for clinicians. Stroke 2011; 42: 1380-1386
  • 22 Handschuh R. Telemedizin beim Schlaganfall. Nervenheilkunde 2009; 28: 103-107
  • 23 Laver KE, Schoene D, Crotty M. et al. Telerehabilitation services for stroke. Cochrane Library 2013; 12: 1-48
  • 24 Nirme J, Rubio B, Duff A. et al. At home motor rehabilitation in the chronic phase of stroke using the rehabilitation gaming system. In: Pons JL, Torricelli D, Pajaro M, Eds. Converging Clinical and Engineering Research on Neurorehabilitation (Biosystems & Biorobotics). Heidelberg – New York - Dordrecht – London: Springer; 2013; 931-935
  • 25 Alankus G, Lazar A, May M. et al. Towards customizable games for stroke rehabilitation. Proceedings of the 28th International Conference on Human Factors in Computing Systems 2010; 2113-2122
  • 26 Burke J, McNeill M, Charles D. et al. Serious games for upper limb rehabilitation following stroke. Conference in Games and Virtual Worlds for Serious Applications 2009; 103-110
  • 27 Ferreira C, Guimarães V, Santos A. et al. Gamification of stroke rehabilitation exercises using a smartphone. Oldenburg, Germany. International Conference on Pervasive Computing Technologies for Healthcare 2014; 282-285
  • 28 Göbel S, Hardy S, Steinmetz R et al. Serious Games zur Prävention und Rehabilitation. 4. Deutscher AAL-Kongress 2011
  • 29 Anguita D, Ghio A, Oneto L. et al. Human activity recognition on smartphones using a multiclass hardware-friendly support vector machine. In: Bravo J, Hervás R, Rodriguez M, Eds. Ambient Assisted Living and Home Care. 4th International Workshop, IWAAL 2012, Vitoria-Gasteiz, Spain, December 3–5, 2012, Proceedings (Lecture Notes in Computer Science). Heidelberg – Dordrecht – London – New York: Springer; 2012; 216-223
  • 30 Banos O, Damas M, Pomares H. et al. Daily living activity recognition based on statistical feature quality group selection. Expert Syst Applicat 2012; 39: 8013-8021
  • 31 Brown M, Deitch T, O’Conor L. Activity classification with smartphone data. STANFORD CS 229 2013; 1-5
  • 32 Su X, Tong H, Ji P. Activity recognition with smartphone sensors. Tsinghua Sci Technol 2014; 19: 235-249
  • 33 Goble DJ, Cone BL, Fling BW. Using the Wii Fit as a tool for balance assessment and neurorehabilitation: the first half decade of “Wii-search”?. J Neuroeng Rehabil 2014; 11: 3-11
  • 34 Mousavi Hondori H, Khademi M. A review on technical and clinical impact of microsoft kinect on physical therapy and rehabilitation. J Med Eng 2014; 1-17
  • 35 Webster D, Celik O. Systematic review of Kinect applications in elderly care and stroke rehabilitation. J Neuroeng Rehabil 2014; 11: 108
  • 36 Nitzsche N, Pawski B, Schulz H. Physiologische Beanspruchung und deren Reliabilität von Exergaming motivierten Kraftübungen. Dtsch Z Sportmed 2012; 11: 319-323
  • 37 Neuendorf T, Zschaebitz D, Nitzsche N. et al. Therapeutischer effekt sensor-gestützter rehabilitationssysteme bei schlaganfallpatienten. therapeutic effect of sensor-based rehabilitation systems in stroke patients. Akt Neurol 2016; 43: 24-31
  • 38 Neuendorf T, Zschaebitz D, Nitzsche N. et al. Neurorehabilitation mit einem Roboterball – ein geeignetes Therapiekonzept? Neurorehabilitation with a robotic ball – an applicable therapy concept?. Neuroreha 2017; 9: 41-44
  • 39 Veerbeek JM, Wegen E, van Peppen R. et al. What is the evidence for physical therapy poststroke? A systematic review and meta-analysis. PloS One 2014; 9: e87987
  • 40 Azab M, Al-Jarrah M, Nazzal M. et al. Effectiveness of constraint-induced movement therapy (CIMT) as home-based therapy on Barthel Index in patients with chronic stroke. Top Stroke Rehabil 2009; 16: 207-211
  • 41 Dromerick AW, Edwards DF, Hahn M. et al. Does the application of constraint-induced movement therapy during acute rehabilitation reduce arm impairment after ischemic stroke?. Stroke 2000; 31: 2984-2988
  • 42 Hakkennes S, Keating JL. Constraint-induced movement therapy following stroke: a systematic review of randomised controlled trials. Aust J Physiother 2005; 51: 221-231
  • 43 Sirtori V, Corbetta D, Moja L. et al. Constraint-induced movement therapy for upper extremities in stroke patients. Cochrane Library 2009; 1-63
  • 44 Wolf SL, Thompson PA, Winstein CJ. et al. The EXCITE stroke trial comparing early and delayed constraint-induced movement therapy. Stroke 2010; 41: 2309-2315
  • 45 Wolf SL, Winstein CJ, Miller JP. et al. The EXCITE trial: Retention of improved upper extremity function among stroke survivors receiving CI movement therapy. Lancet Neurol 2008; 7: 33
  • 46 Sorensen AA, Howard D, Tan WH et al. Minimal clinically important differences of 3 patient-rated outcomes instruments. J Hand Surg Am 2013; 38: 641–649
  • 47 Sorensen AA, Howard D, Tan WH. et al. Minimal clinically important differences of 3 patient-rated outcomes instruments. J Hand Surg Am 2013; 38: 641-649
  • 48 Colomer C, Llorens R, Noé E. et al. Effect of a mixed reality-based intervention on arm, hand, and finger function on chronic stroke. J Neuroeng Rehabil 2016; 13: 1-10
  • 49 Saposnik G, Cohen LG, Mamdani M. et al. Efficacy and safety of non-immersive virtual reality exercising in stroke rehabilitation (EVREST): a randomised, multicentre, single-blind, controlled trial. Lancet Neurol 2016; 15: 1019-1027
  • 50 Flynn S, Palma P, Bender A. Feasibility of using the Sony PlayStation 2 gaming platform for an individual poststroke: a case report. J Neurol Phys Ther 2007; 31: 180-189
  • 51 Sin H, Lee G. Additional virtual reality training using Xbox Kinect in stroke survivors with hemiplegia. Am J Phys Med Rehabil 2013; 92: 871-880
  • 52 Bower KJ, Louie J, Landesrocha Y. et al. Clinical feasibility of interactive motion-controlled games for stroke rehabilitation. J Neuroeng Rehabil 2015; 12: 1
  • 53 Carabeo CGG, Dalida CMM, Padilla EMZ. et al. Stroke patient rehabilitation a pilot study of an android-based game. Simulation & Gaming 2014; 45: 151-166
  • 54 Rand D, Schejter-Margalit T, Dudkiewicz I. et al. The use of the iPad for poststroke hand rehabilitation; a pilot study. Virtual Rehabilitation International Conference. IEEE 2013; 109-113
  • 55 Ma M, Bechkoum K. Serious games for movement therapy after stroke. Systems. Man Cybernetics International Conference. IEEE 2008; 1872-1877
  • 56 Bangor A, Kortum P, Miller J. Determining what individual SUS scores mean: Adding an adjective rating scale. J Usability Studies 2009; 4: 114-123
  • 57 Nijenhuis SM, Prange GB, Amirabdollahian F. et al. Feasibility study into self-administered training at home using an arm and hand device with motivational gaming environment in chronic stroke. J Neuroeng Rehabil 2015; 12: 1
  • 58 Sungkarat S, Fisher BE, Kovindha A. Efficacy of an insole shoe wedge and augmented pressure sensor for gait training in individuals with stroke: a randomized controlled trial. Clin Rehabil 2011; 25: 360-369
  • 59 Timmermans AA, Seelen HA, Geers RP. et al. Sensor-based arm skill training in chronic stroke patients: results on treatment outcome, patient motivation, and system usability. IEEE Trans Neural Syst Rehabil Eng 2010; 18: 284-292
  • 60 Joo LY, Yin TS, Xu D. et al. A feasibility study using interactive commercial off-the-shelf computer gaming in upper limb rehabilitation in patients after stroke. J Rehabil Med 2010; 42: 437-441
  • 61 Martel MRF, Colussi EL, Marchi ACBD.. Effects of a video game-based intervention on the attention and functional independence of older adults after cerebrovascular accident. Fisioter Pesq 2016; 23: 52-58
  • 62 Shin J-H, Ryu H, Jang SH. A task-specific interactive game-based virtual reality rehabilitation system for patients with stroke: a usability test and two clinical experiments. J Neuroeng Rehabil 2014; 11: 32
  • 63 Rand D, Zeilig G, Kizony R. Rehab-let: touchscreen tablet for self-training impaired dexterity post stroke: study protocol for a pilot randomized controlled trial. Trials 2015; 16: 1
  • 64 Cameirão MS, Badia SBi, Duarte E. et al. The combined impact of virtual reality neurorehabilitation and its interfaces on upper extremity functional recovery in patients with chronic stroke. Stroke 2012; 43: 2720-2728
  • 65 Novak D, Nagle A, Keller U. et al. Increasing motivation in robot-aided arm rehabilitation with competitive and cooperative gameplay. J Neuroeng Rehabil 2014; 11: 1
  • 66 Piron L, Turolla A, Agostini M. et al. Motor learning principles for rehabilitation: a pilot randomized controlled study in poststroke patients. Neurorehabil Neural Repair 2010; 24: 501-508