Geburtshilfe Frauenheilkd 2017; 77(06): 667-678
DOI: 10.1055/s-0043-111602
GebFra Science
Original Article
Georg Thieme Verlag KG Stuttgart · New York

Predicting Triple-Negative Breast Cancer Subtype Using Multiple Single Nucleotide Polymorphisms for Breast Cancer Risk and Several Variable Selection Methods

Die Vorhersage von triple-negativem Brustkrebs mithilfe von brustkrebsassoziierten Einzelnukleotid-Polymorphismen und verschiedenen Variablenselektionsmethoden
Lothar Häberle
1   Department of Gynecology and Obstetrics, Erlangen University Hospital, University Breast Center for Franconia, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
2   Biostatistics Unit, Department of Gynecology and Obstetrics, Erlangen University Hospital, Erlangen, Germany
,
Alexander Hein
1   Department of Gynecology and Obstetrics, Erlangen University Hospital, University Breast Center for Franconia, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
,
Matthias Rübner
1   Department of Gynecology and Obstetrics, Erlangen University Hospital, University Breast Center for Franconia, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
,
Michael Schneider
1   Department of Gynecology and Obstetrics, Erlangen University Hospital, University Breast Center for Franconia, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
,
Arif B. Ekici
3   Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
,
Paul Gass
1   Department of Gynecology and Obstetrics, Erlangen University Hospital, University Breast Center for Franconia, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
,
Arndt Hartmann
4   Institute of Pathology, Erlangen University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
,
Rüdiger Schulz-Wendtland
5   Institute of Diagnostic Radiology, Erlangen University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
,
Matthias W. Beckmann
1   Department of Gynecology and Obstetrics, Erlangen University Hospital, University Breast Center for Franconia, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
,
Wing-Yee Lo
6   Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
7   University of Tübingen, Tübingen, Germany
,
Werner Schroth
6   Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
7   University of Tübingen, Tübingen, Germany
,
Hiltrud Brauch
6   Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
7   University of Tübingen, Tübingen, Germany
8   German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
,
Peter A. Fasching*
1   Department of Gynecology and Obstetrics, Erlangen University Hospital, University Breast Center for Franconia, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
,
Marius Wunderle*
1   Department of Gynecology and Obstetrics, Erlangen University Hospital, University Breast Center for Franconia, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
› Author Affiliations
Further Information

Publication History

received 07 April 2017
revised 15 May 2017

accepted 16 May 2017

Publication Date:
28 June 2017 (online)

Abstract

Introduction Studies of triple-negative breast cancer have recently been extending the inclusion criteria and incorporating additional molecular markers into the selection criteria, opening up scope for targeted therapies. The screening phases required for studies of this type are often prolonged, since the process of determining the molecular subtype and carrying out additional biomarker assessment is time-consuming. Parameters such as germline genotypes capable of predicting the molecular subtype before it becomes available from pathology might be helpful for treatment planning and optimizing the timing and cost of screening phases. This appears to be feasible, as rapid and low-cost genotyping methods are becoming increasingly available. The aim of this study was to identify single nucleotide polymorphisms (SNPs) for breast cancer risk capable of predicting triple negativity, in addition to clinical predictors, in breast cancer patients.

Methods This cross-sectional observational study included 1271 women with invasive breast cancer who were treated at a university hospital. A total of 76 validated breast cancer risk SNPs were successfully genotyped. Univariate associations between each SNP and triple negativity were explored using logistic regression analyses. Several variable selection and regression techniques were applied to identify a set of SNPs that together improve the prediction of triple negativity in addition to the clinical predictors of age at diagnosis and body mass index (BMI). The most accurate prediction method was determined by cross-validation.

Results The SNP rs10069690 (TERT, CLPTM1L) was the only significant SNP (corrected p = 0.02) after correction of p values for multiple testing in the univariate analyses. This SNP and three additional SNPs from the genes RAD51B, CCND1, and FGFR2 were selected for prediction of triple negativity. The addition of these SNPs to clinical predictors increased the cross-validated area under the curve (AUC) from 0.618 to 0.625. Age at diagnosis was the strongest predictor, stronger than any genetic characteristics.

Conclusion Prediction of triple-negative breast cancer can be improved if SNPs associated with breast cancer risk are added to a prediction rule based on age at diagnosis and BMI. This finding could be used for prescreening purposes in complex molecular therapy studies for triple-negative breast cancer.

Zusammenfassung

Einleitung Studien bei triple-negativem Brustkrebs haben die Einschlusskriterien durch die Aufnahme zusätzlicher molekularer Marker erweitert. Im Rahmen des Screenings für diese Therapiestudien wird sowohl für die Bestimmung des molekularen Subtyps als als auch für zusätzliche Biomarker-Untersuchungen ein längerer Zeitraum beansprucht, was die Behandlung verzögert. Keimbahn-Genotypen könnten bei der Vorhersage des molekularen Subtyps helfen, zumal schnelle und günstige Genotypisierungsmethoden zunehmend zur Verfügung stehen. Ziel dieser Studie war es deswegen, zu prüfen, ob Einzelnukleotid-Polymorphismen (SNPs) der Keimbahn dabei helfen können, Brustkrebspatientinnen mit triple-negativem Mammakarzinom zu identifizieren.

Methoden In dieser Querschnittsstudie wurden 1271 Patientinnen mit invasivem Mammakarzinom eingeschlossen. Insgesamt wurden 76 validierte Brustkrebsrisiko-SNPs erfolgreich genotypisiert. Univariate Assoziationen zwischen jedem SNP und Triple-Negativität wurden mittels logistischer Regression geprüft. Verschiedene Variablenselektions- und Regressionsmethoden wurden angewandt, um eine Gruppe von SNPs zu identifizieren, die zusammen mit den klinischen Prädiktoren Alter bei Diagnose und BMI die Prädiktion der Triple-Negativität verbessern. Mittels Kreuzvalidierung wurde die Methode mit der höchsten Genauigkeit bestimmt.

Ergebnisse Der SNP rs10069690 (TERT, CLPTM1L) war der einzige einzelne SNP, der nach p-Wert-Korrektur für multiples Testen signifikant mit Triple-Negativität assoziiert war (p = 0,02). Dieser SNP und 3 weitere in den Genen RAD51B, CCND1 und FGFR2 wurden ausgewählt, um gemeinsam in einem Prädiktionsmodell Triple-Negativität vorherzusagen. Die Hinzunahme dieser 4 SNPs erhöhte die kreuzvalidierte AUC von 0,618 auf 0,625. Alter bei Diagnose war bei Weitem der stärkste Prädiktor.

Schlussfolgerung Die Vorhersage von triple-negativem Mammakarzinom kann verbessert werden, wenn sie nicht nur auf den klinischen Prädiktoren Alter bei Diagnose und BMI basiert, sondern auch auf Brustkrebsrisiko-SNPs. Das Prädiktionsmodell könnte bei der Rekrutierung von Patientinnen für aufwendige molekulare Therapiestudien eingesetzt werden.

* Shared last authorship.


Supporting Information

 
  • References

  • 1 Celldex Therapeutics. Study of Glembatumumab Vedotin (CDX-011) in patients with metastatic, gpNMB over-expressing, triple negative breast cancer (METRIC). 2017 Online: https://www.clinicaltrials.gov/ct2/show/NCT02713828 last access: 01.03.2017
  • 2 AstraZeneca. Assessment of the efficacy and safety of olaparib monotherapy versus physicians choice chemotherapy in the treatment of metastatic breast cancer patients with germline BRCA1/2 mutations. (OlympiAD). 2013 Online: https://www.clinicaltrials.gov/ct2/show/NCT02000622 last access: 01.03.2017
  • 3 AstraZeneca. Olaparib as adjuvant treatment in patients with germline BRCA mutated high risk HER2 negative primary breast cancer (OlympiA). 2017 Online: https://www.clinicaltrials.gov/ct2/show/NCT02032823 last access: 01.03.2017
  • 4 Althuis MD, Fergenbaum JH, Garcia-Closas M. et al. Etiology of hormone receptor-defined breast cancer: a systematic review of the literature. Cancer Epidemiol Biomarkers Prev 2004; 13: 1558-1568
  • 5 Hess KR, Pusztai L, Buzdar AU. et al. Estrogen receptors and distinct patterns of breast cancer relapse. Breast Cancer Res Treat 2003; 78: 105-118
  • 6 Yang XR, Chang-Claude J, Goode EL. et al. Associations of breast cancer risk factors with tumor subtypes: a pooled analysis from the Breast Cancer Association Consortium studies. J Natl Cancer Inst 2011; 103: 250-263
  • 7 Rauh C, Gass P, Heusinger K. et al. Association of molecular subtypes with breast cancer risk factors: a case-only analysis. Eur J Cancer Prev 2015; 24: 484-490
  • 8 Heusinger K, Jud SM, Haberle L. et al. Association of mammographic density with hormone receptors in invasive breast cancers: results from a case-only study. Int J Cancer 2012; 131: 2643-2649
  • 9 Yaghjyan L, Colditz GA, Collins LC. et al. Mammographic breast density and subsequent risk of breast cancer in postmenopausal women according to tumor characteristics. J Natl Cancer Inst 2011; 103: 1179-1189
  • 10 SP&A Application Laboratory Thermo Fisher Scientific Vantaa Finland. Rapid and non-invasive SNP determination of lactase persistence trait – application notes. 2014 Online: https://tools.thermofisher.com/content/sfs/brochures/SNP-Determination-of-Lactose-AppNote-EN.pdf last access: 05.05.2017
  • 11 Couch FJ, Hart SN, Sharma P. et al. Inherited mutations in 17 breast cancer susceptibility genes among a large triple-negative breast cancer cohort unselected for family history of breast cancer. J Clin Oncol 2015; 33: 304-311
  • 12 Fasching PA, Ekici AB, Wachter DL. et al. Breast cancer risk – from genetics to molecular understanding of pathogenesis. Geburtsh Frauenheilk 2013; 73: 1228-1235
  • 13 Michailidou K, Hall P, Gonzalez-Neira A. et al. Large-scale genotyping identifies 41 new loci associated with breast cancer risk. Nat Genet 2013; 45: 353-361 361e351–361e352
  • 14 Michailidou K, Beesley J, Lindstrom S. et al. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer. Nat Genet 2015; 47: 373-380
  • 15 Purrington KS, Slager S, Eccles D. et al. Genome-wide association study identifies 25 known breast cancer susceptibility loci as risk factors for triple-negative breast cancer. Carcinogenesis 2014; 35: 1012-1019
  • 16 Warren H, Dudbridge F, Fletcher O. et al. 9q31.2-rs865686 as a susceptibility locus for estrogen receptor-positive breast cancer: evidence from the Breast Cancer Association Consortium. Cancer Epidemiol Biomarkers Prev 2012; 21: 1783-1791
  • 17 Stevens KN, Fredericksen Z, Vachon CM. et al. 19p13.1 is a triple-negative-specific breast cancer susceptibility locus. Cancer Res 2012; 72: 1795-1803
  • 18 Stevens KN, Vachon CM, Lee AM. et al. Common breast cancer susceptibility loci are associated with triple-negative breast cancer. Cancer Res 2011; 71: 6240-6249
  • 19 Garcia-Closas M, Couch FJ, Lindstrom S. et al. Genome-wide association studies identify four ER negative-specific breast cancer risk loci. Nat Genet 2013; 45: 392-398
  • 20 Antoniou AC, Wang X, Fredericksen ZS. et al. A locus on 19p13 modifies risk of breast cancer in BRCA1 mutation carriers and is associated with hormone receptor-negative breast cancer in the general population. Nat Genet 2010; 42: 885-892
  • 21 Broeks A, Schmidt MK, Sherman ME. et al. Low penetrance breast cancer susceptibility loci are associated with specific breast tumor subtypes: findings from the Breast Cancer Association Consortium. Hum Mol Genet 2011; 20: 3289-3303
  • 22 Heusinger K, Loehberg CR, Haeberle L. et al. Mammographic density as a risk factor for breast cancer in a German case-control study. Eur J Cancer Prev 2011; 20: 1-8
  • 23 Rauh C, Hack CC, Haberle L. et al. Percent mammographic density and dense area as risk factors for breast cancer. Geburtsh Frauenheilk 2012; 72: 727-733
  • 24 Haberle L, Wagner F, Fasching PA. et al. Characterizing mammographic images by using generic texture features. Breast Cancer Res 2012; 14: R59
  • 25 French JD, Ghoussaini M, Edwards SL. et al. Functional variants at the 11q13 risk locus for breast cancer regulate cyclin D1 expression through long-range enhancers. Am J Hum Genet 2013; 92: 489-503
  • 26 Dunning AM, Healey CS, Baynes C. et al. Association of ESR1 gene tagging SNPs with breast cancer risk. Hum Mol Genet 2009; 18: 1131-1139
  • 27 Schmidt MK, Hogervorst F, van Hien R. et al. Age- and tumor subtype-specific breast cancer risk estimates for CHEK2*1100delC carriers. J Clin Oncol 2016; 34: 2750-2760
  • 28 Weischer M, Nordestgaard BG, Pharoah P. et al. CHEK2*1100delC heterozygosity in women with breast cancer associated with early death, breast cancer-specific death, and increased risk of a second breast cancer. J Clin Oncol 2012; 30: 4308-4316
  • 29 Milne RL, Benitez J, Nevanlinna H. et al. Risk of estrogen receptor-positive and -negative breast cancer and single-nucleotide polymorphism 2q35-rs13387042. J Natl Cancer Inst 2009; 101: 1012-1018
  • 30 Bojesen SE, Pooley KA, Johnatty SE. et al. Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer. Nat Genet 2013; 45: 371-384 384e371–384e372
  • 31 Dunning AM, Michailidou K, Kuchenbaecker KB. et al. Breast cancer risk variants at 6q25 display different phenotype associations and regulate ESR1, RMND1 and CCDC170. Nat Genet 2016; 48: 374-386
  • 32 Ghoussaini M, Fletcher O, Michailidou K. et al. Genome-wide association analysis identifies three new breast cancer susceptibility loci. Nat Genet 2012; 44: 312-318
  • 33 Haiman CA, Chen GK, Vachon CM. et al. A common variant at the TERT-CLPTM1 L locus is associated with estrogen receptor-negative breast cancer. Nat Genet 2011; 43: 1210-1214
  • 34 Beckmann MW, Brucker C, Hanf V. et al. Quality assured health care in certified breast centers and improvement of the prognosis of breast cancer patients. Onkologie 2011; 34: 362-367
  • 35 Easton DF, Pooley KA, Dunning AM. et al. Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 2007; 447: 1087-1093
  • 36 Azzato EM, Tyrer J, Fasching PA. et al. Association between a germline OCA2 polymorphism at chromosome 15q13.1 and estrogen receptor-negative breast cancer survival. J Natl Cancer Inst 2010; 102: 650-662
  • 37 Fagerholm R, Hofstetter B, Tommiska J. et al. NAD(P)H : quinone oxidoreductase 1 NQO1*2 genotype (P187S) is a strong prognostic and predictive factor in breast cancer. Nat Genet 2008; 40: 844-853
  • 38 Pirie A, Guo Q, Kraft P. et al. Common germline polymorphisms associated with breast cancer-specific survival. Breast Cancer Res 2015; 17: 58
  • 39 Shu XO, Long J, Lu W. et al. Novel genetic markers of breast cancer survival identified by a genome-wide association study. Cancer Res 2012; 72: 1182-1189
  • 40 Goldhirsch A, Wood WC, Gelber RD. et al. Meeting highlights: updated international expert consensus on the primary therapy of early breast cancer. J Clin Oncol 2003; 21: 3357-3365
  • 41 Goldhirsch A, Glick JH, Gelber RD. et al. Meeting highlights: international expert consensus on the primary therapy of early breast cancer 2005. Ann Oncol 2005; 16: 1569-1583
  • 42 Goldhirsch A, Wood WC, Gelber RD. et al. Progress and promise: highlights of the international expert consensus on the primary therapy of early breast cancer 2007. Ann Oncol 2007; 18: 1133-1144
  • 43 Goldhirsch A, Ingle JN, Gelber RD. et al. Thresholds for therapies: highlights of the St Gallen International Expert Consensus on the primary therapy of early breast cancer 2009. Ann Oncol 2009; 20: 1319-1329
  • 44 Sauter G, Lee J, Bartlett JM. et al. Guidelines for human epidermal growth factor receptor 2 testing: biologic and methodologic considerations. J Clin Oncol 2009; 27: 1323-1333
  • 45 Salmen J, Neugebauer J, Fasching PA. et al. Pooled analysis of the prognostic relevance of progesterone receptor status in five German cohort studies. Breast Cancer Res Treat 2014; 148: 143-151
  • 46 Harrell jr. FE, Lee KL, Pollock BG. Regression models in clinical studies: determining relationships between predictors and response. J Natl Cancer Inst 1988; 80: 1198-1202
  • 47 Bovelstad HM, Nygard S, Storvold HL. et al. Predicting survival from microarray data–a comparative study. Bioinformatics 2007; 23: 2080-2087
  • 48 Steyerberg EW, Borsboom GJ, van Houwelingen HC. et al. Validation and updating of predictive logistic regression models: a study on sample size and shrinkage. Stat Med 2004; 23: 2567-2586
  • 49 Sauerbrei W, Schumacher M. A bootstrap resampling procedure for model building: application to the Cox regression model. Stat Med 1992; 11: 2093-2109
  • 50 Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc Series B Stat Methodol 1996; 58: 267-288
  • 51 Friedman JH. Greedy function approximation: a gradient boosting machine. Ann Stat 2001; 29: 1189-1232
  • 52 Bühlmann P, Hothorn T. Boosting algorithms: regularization, prediction and model fitting. Stat Sci 2007; 22: 477-505
  • 53 Boulesteix AL, Hothorn T. Testing the additional predictive value of high-dimensional molecular data. BMC Bioinformatics 2010; 11: 78
  • 54 Pencina MJ, DʼAgostino sr. RB, Steyerberg EW. Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers. Stat Med 2011; 30: 11-21
  • 55 Wessels LF, Reinders MJ, Hart AA. et al. A protocol for building and evaluating predictors of disease state based on microarray data. Bioinformatics 2005; 21: 3755-3762
  • 56 Häberle L, Fasching PA, Brehm B. et al. Mammographic density is the main correlate of tumors detected on ultrasound but not on mammography. Int J Cancer 2016; 139: 1967-1974
  • 57 Kote-Jarai Z, Saunders EJ, Leongamornlert DA. et al. Fine-mapping identifies multiple prostate cancer risk loci at 5p15, one of which associates with TERT expression. Hum Mol Genet 2013; 22: 2520-2528
  • 58 Meyer KB, OʼReilly M, Michailidou K. et al. Fine-scale mapping of the FGFR2 breast cancer risk locus: putative functional variants differentially bind FOXA1 and E2F1. Am J Hum Genet 2013; 93: 1046-1060
  • 59 Garcia-Closas M, Hall P, Nevanlinna H. et al. Heterogeneity of breast cancer associations with five susceptibility loci by clinical and pathological characteristics. PLoS Genet 2008; 4: e1000054
  • 60 Masson JY, Tarsounas MC, Stasiak AZ. et al. Identification and purification of two distinct complexes containing the five RAD51 paralogs. Genes Dev 2001; 15: 3296-3307
  • 61 Thacker J. The RAD51 gene family, genetic instability and cancer. Cancer Lett 2005; 219: 125-135
  • 62 Orr N, Lemnrau A, Cooke R. et al. Genome-wide association study identifies a common variant in RAD51B associated with male breast cancer risk. Nat Genet 2012; 44: 1182-1184
  • 63 Eeles RA, Olama AA, Benlloch S. et al. Identification of 23 new prostate cancer susceptibility loci using the iCOGS custom genotyping array. Nat Genet 2013; 45: 385-391 391e381–391e382
  • 64 Couch FJ, Wang X, McGuffog L. et al. Genome-wide association study in BRCA1 mutation carriers identifies novel loci associated with breast and ovarian cancer risk. PLoS Genet 2013; 9: e1003212
  • 65 Lee PS, Fang J, Jessop L. et al. RAD51B activity and cell cycle regulation in response to DNA damage in breast cancer cell lines. Breast Cancer (Auckl) 2014; 8: 135-144
  • 66 Lambrechts D, Truong T, Justenhoven C. et al. 11q13 is a susceptibility locus for hormone receptor positive breast cancer. Hum Mutat 2012; 33: 1123-1132
  • 67 Turnbull C, Ahmed S, Morrison J. et al. Genome-wide association study identifies five new breast cancer susceptibility loci. Nat Genet 2010; 42: 504-507
  • 68 Finn RS, Aleshin A, Slamon DJ. Targeting the cyclin-dependent kinases (CDK) 4/6 in estrogen receptor-positive breast cancers. Breast Cancer Res 2016; 18: 17
  • 69 Ein-Dor L, Kela I, Getz G. et al. Outcome signature genes in breast cancer: is there a unique set?. Bioinformatics 2005; 21: 171-178
  • 70 Ambroise C, McLachlan GJ. Selection bias in gene extraction on the basis of microarray gene-expression data. Proc Natl Acad Sci U S A 2002; 99: 6562-6566
  • 71 Schild RL, Maringa M, Siemer J. et al. Weight estimation by three-dimensional ultrasound imaging in the small fetus. Ultrasound Obstet Gynecol 2008; 32: 168-175
  • 72 Hepp T, Schmid M, Gefeller O. et al. Approaches to regularized regression–a comparison between gradient boosting and the lasso. Methods Inf Med 2016; 55: 422-430
  • 73 Rauh C, Schuetz F, Rack B. et al. Hormone therapy and its effect on the prognosis in breast cancer patients. Geburtsh Frauenheilk 2015; 75: 588-596
  • 74 Häberle L, Wagner F, Fasching PA. et al. Characterizing mammographic images using generic texture features. Breast Cancer Res 2012; 14: R59
  • 75 Moons KG, Kengne AP, Woodward M. et al. Risk prediction models: I. Development, internal validation, and assessing the incremental value of a new (bio)marker. Heart 2012; 98: 683-690
  • 76 Gerds TA, Cai T, Schumacher M. The performance of risk prediction models. Biom J 2008; 50: 457-479
  • 77 Wang TJ, Gona P, Larson MG. et al. Multiple biomarkers for the prediction of first major cardiovascular events and death. N Engl J Med 2006; 355: 2631-2639
  • 78 Pencina MJ, DʼAgostino sr. RB, DʼAgostino jr. RB. et al. Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med 2008; 27: 157-172 discussion 207–212
  • 79 Thomas G, Jacobs KB, Kraft P. et al. A multistage genome-wide association study in breast cancer identifies two new risk alleles at 1p11.2 and 14q24.1 (RAD51L1). Nat Genet 2009; 41: 579-584
  • 80 Cox A, Dunning AM, Garcia-Closas M. et al. A common coding variant in CASP8 is associated with breast cancer risk. Nat Genet 2007; 39: 352-358
  • 81 Stacey SN, Manolescu A, Sulem P. et al. Common variants on chromosomes 2q35 and 16q12 confer susceptibility to estrogen receptor-positive breast cancer. Nat Genet 2007; 39: 865-869
  • 82 Couch FJ, Kuchenbaecker KB, Michailidou K. et al. Identification of four novel susceptibility loci for oestrogen receptor negative breast cancer. Nat Commun 2016; 7: 11375
  • 83 Ahmed S, Thomas G, Ghoussaini M. et al. Newly discovered breast cancer susceptibility loci on 3p24 and 17q23.2. Nat Genet 2009; 41: 585-590
  • 84 Milne RL, Burwinkel B, Michailidou K. et al. Common non-synonymous SNPs associated with breast cancer susceptibility: findings from the Breast Cancer Association Consortium. Hum Mol Genet 2014; 23: 6096-6111
  • 85 Stacey SN, Manolescu A, Sulem P. et al. Common variants on chromosome 5p12 confer susceptibility to estrogen receptor-positive breast cancer. Nat Genet 2008; 40: 703-706
  • 86 Johnatty SE, Beesley J, Chen X. et al. Evaluation of candidate stromal epithelial cross-talk genes identifies association between risk of serous ovarian cancer and TERT, a cancer susceptibility “hot-spot”. PLoS Genet 2010; 6: e1001016
  • 87 Wang Y, McKay JD, Rafnar T. et al. Rare variants of large effect in BRCA2 and CHEK2 affect risk of lung cancer. Nat Genet 2014; 46: 736-741
  • 88 Zheng W, Long J, Gao YT. et al. Genome-wide association study identifies a new breast cancer susceptibility locus at 6q25.1. Nat Genet 2009; 41: 324-328
  • 89 Fletcher O, Johnson N, Orr N. et al. Novel breast cancer susceptibility locus at 9q31.2: results of a genome-wide association study. J Natl Cancer Inst 2011; 103: 425-435