CC BY-NC-ND 4.0 · Sports Med Int Open 2017; 01(03): E94-E100
DOI: 10.1055/s-0043-111587
Orthopedics & Biomechanics
Eigentümer und Copyright ©Georg Thieme Verlag KG 2017

Semimembranosus Muscle Injuries In Sport. A Practical MRI use for Prognosis

Ramon Balius
1   Clinica Diagonal, Sports Medicine and Imaging, Esplugues de Llobregat, Spain
,
Mireia Bossy
2   Centros Medicos Creu Blanca, Ultrasound, Barcelona, Spain
,
Carles Pedret
1   Clinica Diagonal, Sports Medicine and Imaging, Esplugues de Llobregat, Spain
,
Lluís Capdevila
3   Universitat Autonoma de Barcelona, Laboratory of Sport Psychology Autonoma University de Barcelona, Spain, Bellaterra, Catalunya, Spain
,
Xavier Alomar
4   Centres Mèdics Creu Blanca, Department of Radiology, Barcelona, Spain
,
Bryan Heiderscheit
5   University of Wisconsin School of Medicine and Public Health, Orthopedics and Rehabilitation, Madison, United States
,
Gil Rodas
6   F.C. Barcelona, Medical Services F.C. Barcelona, Barcelona, Spain
› Author Affiliations
Further Information

Publication History

received 26 April 2017
revised   26 April 2017

accepted 08 May 2017

Publication Date:
14 June 2017 (online)

Abstract

The aim of this work was to study semimembranosus musculotendinous injuries (SMMTI) and return to play (RTP). The hypothesis is that some related anatomic variables of the SM could contribute to the prognosis of RTP. The retrospective study was done with 19 athletes who suffered SMMTI from 2010 to 2013 and in whose cases a 3.0T MRI was performed. We evaluated the A, B, C SM regions damaged and calculated the relative length and percentage of cross-sectional area (CSA) affected. We found the correlation of these variables with RTP. The data was regrouped in those cases where the part C of the injury was of interest and those in which the C region was unscathed (pooled parts). We used the Mann-Whitney U test and there was a higher RTP when the injury involved the C part of SM (49.1 days; 95% CI [27.6– 70.6]) compared to non-C-part involvement (27.8 days; 95% CI [19.5–36.0]). The SMMTI with longer RTP typically involves the C part with or without participation of the B part. In daily practice, the appearance on MRI of an altered proximal tendon of the SM indicates that the injury affects the C region and therefore has a longer RTP.

 
  • References

  • 1 Askling CM, Tengvar M, Saartok T, Thorstensson A. Acute first-time hamstring strains during high-speed running: a longitudinal study including clinical and magnetic resonance imaging findings. Am J Sports Med 2007; 35: 197-206
  • 2 Askling CM, Tengvar M, Saartok T, Thorstensson A. Proximal hamstring strains of stretching type in different sports: injury situations, clinical and magnetic resonance imaging characteristics, and return to sport. Am J Sports Med 2008; 36: 1799-1804
  • 3 Askling CM, Tengvar M, Thorstensson A. Acute hamstring injuries in Swedish elite football: a prospective randomised controlled clinical trial comparing two rehabilitation protocols. Br J Sports Med 2014; 48: 532-539
  • 4 Battermann N, Appell HJ, Dargel J, Koebke J. An anatomical study of the proximal hamstring muscle complex to elucidate muscle strains in this region. Int J Sports Med 2011; 32: 211-215
  • 5 Benninger B, Delamarter T. Distal semimembranosus muscle-tendon-unit review: morphology, accurate terminology, and clinical relevance. Folia Morphol 2013; 72: 1-9
  • 6 Comin J, Malliaras P, Baquie P, Barbour T, Connell D. Return to competitive play after hamstring injuries involving disruption of the central tendon. Am J Sports Med 2013; 41: 111-115
  • 7 Connell DA, Schneider-Kolsky ME, Hoving JL, Malara F, Buchbinder R, Koulouris G, Burke F, Bass C. Longitudinal study comparing sonographic and MRI assessments of acute and healing hamstring injuries. Am J Roentgenol 2004; 183: 975-984
  • 8 De Smet AA, Best TM. MR imaging of the distribution and location of acute hamstring injuries in athletes. Am J Roentgenol 2000; 174: 393-399
  • 9 Ekstrand J, Hägglund M, Waldén M. Epidemiology of muscle injuries in professional football (soccer). Am J Sports Med 2011; 39: 1226-1232
  • 10 Fuller CW, Ekstrand J, Junge A, Andersen T, Bahr R, Dvorak J, Hägglund M, McCrory P, Meeuwiss WH. Consensus statement on injury definitions and data collection procedures in studies of football (soccer) injuries. Br J Sports Med 2006; 40: 193-201
  • 11 Gans C, de Vree F. Functional bases of fiber length and angulation in muscle. J Morphol 1987; 192: 63-85
  • 12 Garrett Jr WE, Rich FR, Nikolaou PK, Vogler 3rd JB. Computed tomography of hamstring muscle strains. Med Sci Sports Exerc 1989; 21: 506-514
  • 13 Hägglund M, Walden M, Bahr R, Ekstrand J. Methods for epidemiological study of injuries to professional football players: developing the UEFA model. Br J Sports Med 2005; 39: 340-346
  • 14 Harriss DJ, Atkinson G. Ethical standards in sports and exercise science research: 2016 update. Int J Sports Med 2015; 36: 1121-1124
  • 15 Hayashi A, Maruyama Y. Lateral intermuscular septum of the thigh and short head of the biceps femoris muscle: an anatomic investigation with new clinical applications. Plast Reconstr Surg 2001; 108: 1646-1654
  • 16 Heiderscheit BC, Sherry MA, Silder A, Chumanov ES, Thelen DG. Hamstring strain injuries: recommendations for diagnosis, rehabilitation, and injury prevention. J Orthop Sports Phys Ther 2010; 40: 67-81
  • 17 Koulouris G, Connell D. Evaluation of the hamstring muscle complex following acute injury. Skeletal Radiol 2003; 32: 582-589
  • 18 Levangie PK, Norkin CC. Joint structure and function: a comprehensive analysis. 3rd ed. Philadelphia: F.A. Davis Company; 2001: 113-163
  • 19 Pedret C, Balius R. Lesiones musculares en el deporte. Actualización de un artículo del Dr. Cabot, publicado en Apuntes de Medicina Deportiva en 1965. Apunts Med Esport 2015; 50: 111-120
  • 20 Prose LP, Ten Noever De. Brow Delis PC, De Bruin GJ. The semimembranosus muscle – the architecture, innervation and insertions. Eur J Morphol 1990; 28: 93-94
  • 21 Rodas G, Pruna R, Til L. FC Barcelona medical services. Clinical practice guide for muscular injuries. Epidemiology, diagnosis, treatment and prevention. Apunts Med Esport 2009; 64: 179-203
  • 22 Schneider-Kolsky ME, Hoving JL, Warren P, Connell DA. A comparison between clinical assessment and magnetic resonance imaging of acute hamstring injuries. Am J Sports Med 2006; 34: 1008-1015
  • 23 Segal RL, Wolf SL, DeCamp MJ, Chopp MT, English AW. Anatomical partitioning of three multiarticular human muscles. Acta Anat 1991; 142: 261-266
  • 24 Segal RL. Neuromuscular compartments in the human biceps brachii muscle. Neurosci Lett 1992; 40: 98-102
  • 25 Segal RL, Catlin PA, Krauss EW, Merick KA, Robilotto JB. Anatomical partitioning of three human forearm muscles. Cells Tissues Organs 2002; 170: 183-197
  • 26 Slavotinek JP, Verrall GM, Fon GT. Hamstring injury in athletes: using MR imaging measurements to compare extent of muscle injury with amount of time lost from competition. Am J Roentgenol 2002; 179: 1621-1628
  • 27 Van der Made AD, Wieldraaijer T, Kerkhoffs GM, Kleipool R, Engebretsen L, Van Dijk C, Golanó P. The hamstring muscle complex. Knee Surg Sports Traumatol Arthrosc 2015; 23: 2115-2122
  • 28 Wickham JB, Brown JMM. Muscles within muscles: the neuromotor control of intra-muscular segments. Eur J Appl Physiol 1998; 78: 219-225
  • 29 Woodley SJ, Mercer SR. Hamstring muscles: architecture and innervation. Cells Tissues Organs 2005; 179: 125-141