Rofo 2017; 189(10): 945-956
DOI: 10.1055/s-0043-110861
Review
© Georg Thieme Verlag KG Stuttgart · New York

Modern Cartilage Imaging of the Ankle

Article in several languages: English | deutsch
Marc-André Weber
1   University Hospital Heidelberg, Diagnostic and Interventional Radiology, Heidelberg, Germany
,
Felix Wünnemann
1   University Hospital Heidelberg, Diagnostic and Interventional Radiology, Heidelberg, Germany
,
Pia M. Jungmann
2   Radiology, Technical University of Munich, Germany
,
Benita Kuni
3   Orthopedics and Trauma Surgery, Ortho-Zentrum Karlsruhe, Germany
,
Christoph Rehnitz
1   University Hospital Heidelberg, Diagnostic and Interventional Radiology, Heidelberg, Germany
› Author Affiliations
Further Information

Publication History

23 November 2016

08 April 2017

Publication Date:
11 July 2017 (online)

Abstract

Background Talar osteochondral lesions are an important risk factor for the development of talar osteoarthritis. Furthermore, osteochondral lesions might explain persistent ankle pain. Early diagnosis of accompanying chondral defects is important to establish the optimal therapy strategy and thereby delaying or preventing the onset of osteoarthritis. The purpose of this review is to explain modern cartilage imaging with emphasis of MR imaging as well as the discussion of more sophisticated imaging studies like CT-arthrography or functional MR imaging.

Methods Pubmed literature search concerning: osteochondral lesions, cartilage damage, ankle joint, talus, 2 D MR imaging, 3 D MR imaging, cartilage MR imaging, CT-arthrography, cartilage repair, microfracture, OATS, MACT.

Results and Conclusion Dedicated MR imaging protocols to delineate talar cartilage and the appearance of acute and chronic osteochondral lesions were discussed. Recent developments of MR imaging, such as isotropic 3 D imaging that has a higher signal-to noise ratio when compared to 2 D imaging, and specialized imaging methods such as CT-arthrography as well as functional MR imaging were introduced. Several classifications schemes and imaging findings of osteochondral lesions that influence the conservative or surgical therapy strategy were discussed. MRI enables after surgery the non-invasive assessment of the repair tissue and the success of implantation.

Key points

  • Modern MRI allows for highly resolved visualization of the articular cartilage of the ankle joint and of subchondral pathologies.

  • Recent advances in MRI include 3 D isotropic ankle joint imaging, which deliver higher signal-to-noise ratios of the cartilage and less partial volume artifacts when compared with standard 2 D sequences.

  • In case of osteochondral lesions MRI is beneficial for assessing the stability of the osteochondral fragment and for this discontinuity of the cartilage layer is an important factor.

  • CT-arthrography can be used in case of contraindications of MRI and in unclear MRI findings as further diagnostic approach.

Citation Format

  • Weber MA, Wünnemann F, Jungmann PM et al. Modern Cartilage Imaging of the Ankle. Fortschr Röntgenstr 2017; 189: 945 – 956

 
  • References

  • 1 Rodgers MM. Dynamic foot biomechanics. J Orthop Sports Phys Ther 1995; 21: 306-316
  • 2 Egloff C, Hügle T, Valderrabano V. Biomechanics and pathomechanisms of osteoarthritis. Swiss Med Wkly 2012; 142: w13583
  • 3 Stufkens SA, Knupp M, Horisberger M. et al. Cartilage lesions and the development of osteoarthritis after internal fixation of ankle fractures: a prospective study. J Bone Joint Surg Am 2010; 92: 279-286
  • 4 Verhagen RA, Maas M, Dijkgraaf MG. et al. Prospective study on diagnostic strategies in osteochondral lesions of the talus. Is MRI superior to helical CT?. J Bone Joint Surg Br 2005; 87: 41-46
  • 5 O'Loughlin PF, Heyworth BE, Kennedy JG. Current concepts in the diagnosis and treatment of osteochondral lesions of the ankle. Am J Sports Med 2010; 38: 392-404
  • 6 Grambart ST. Arthroscopic management of osteochondral lesions of the talus. Clin Podiatr Med Surg 2016; 33: 521-530
  • 7 Schmid MR, Pfirrmann CW, Hodler J. et al. Cartilage lesions in the ankle joint: comparison of MR arthrography and CT arthrography. Skeletal Radiol 2003; 32: 259-265
  • 8 Shepherd DE, Seedhom BB. Thickness of human articular cartilage in joints of the lower limb. Ann Rheum Dis 1999; 58: 27-34
  • 9 Bohndorf K, Imhof H, Schibany N. Bildgebende Diagnostik akuter und chronischer osteochondraler Läsionen am Talus. Orthopäde 2001; 30: 12-19
  • 10 Barr C, Bauer JS, Malfair D. et al. MR imaging of the ankle at 3 Tesla and 1.5 Tesla: protocol optimization and application to cartilage, ligament and tendon pathology in cadaver specimens. Eur Radiol 2007; 17: 1518-1528
  • 11 Mengiardi B, Pfirrmann CW, Schöttle PB. et al. Magic angle effect in MR imaging of ankle tendons: influence of foot positioning on prevalence and site in asymptomatic subjects and cadaveric tendons. Eur Radiol 2006; 16: 2197-2206
  • 12 Nierhoff CE, Ludwig K. Magnetresonanztomographie des Sprunggelenkes. Radiologe 2006; 46: 1005-1020
  • 13 AG Muskoloskelettale Diagnostik der Deutschen Röntgengesellschaft. Von der AG Muskuloskelettale Diagnostik der Deutschen Röntgengesellschaft empfohlene Protokolle für MRT-Untersuchungen der Gelenke und Wirbelsäule. Fortschr Röntgenstr 2006; 178: 128-130
  • 14 Notohamiprodjo M, Kuschel B, Horng A. et al. 3D-MRI of the ankle with optimized 3D-SPACE. Invest Radiol 2012; 47: 231-239
  • 15 Stevens KJ, Busse RF, Han E. et al. Ankle: isotropic MR imaging with 3D-FSE-cube – initial experience in healthy volunteers. Radiology 2008; 249: 1026-1033
  • 16 Yi J, Cha JG, Lee YK. et al. MRI of the anterior talofibular ligament, talar cartilage and os subfibulare: Comparison of isotropic resolution 3D and conventional 2D T2-weighted fast spin-echo sequences at 3.0 T. Skeletal Radiol 2016; 45: 899-908
  • 17 Jungmann PM, Baum T, Schaeffeler C. et al. 3.0T MR imaging of the ankle: Axial traction for morphological cartilage evaluation, quantitative T2 mapping and cartilage diffusion imaging-A preliminary study. Eur J Radiol 2015; 84: 1546-1554
  • 18 Woertler K, Rummeny EJ, Settles M. A fast high-resolution multisliceT1-weighted turbo spin-echo (TSE) sequence with a DRIVen equilibrium (DRIVE) pulse for native arthrographic contrast. Am J Roentgenol 2005; 185: 1468-1470
  • 19 Aurich M, Albrecht D, Angele P. et al. Treatment of Osteochondral Lesions in the Ankle: A Guideline from the Group "Clinical Tissue Regeneration" of the German Society of Orthopaedics and Traumatology (DGOU). Z Orthop Unfall 2017; 155: 92-99
  • 20 Kirschke JS, Braun S, Baum T. et al. Diagnostic Value of CT arthrography for evaluation of osteochondral lesions at the ankle. Biomed Res Int 2016; 2016: 3594253
  • 21 Cerezal L, Llopis E, Canga A. et al. MR arthrography of the ankle: indications and technique. Radiol Clin North Am 2008; 46: 973-994
  • 22 Waldt S, Eiber M, Wörtler K. Gelenkknorpel. In: Messverfahren und Klassifikationen in der muskuloskelettalen Radiologie. Stuttgart-New York: Thieme; 2011: 174-179
  • 23 Masala S, Fiori R, Bartolucci DA. et al. Diagnostic and therapeutic joint injections. Semin Intervent Radiol 2010; 27: 160-171
  • 24 Steinbach LS, Palmer WE, Schweitzer ME. Special focus session. MR arthrography. Radiographics 2002; 22: 1223-1246
  • 25 Forney M, Subhas N, Donley B. et al. MR imaging of the articular cartilage of the knee and ankle. Magn Reson Imaging Clin N Am 2011; 19: 379-405
  • 26 Cuttica DJ, Smith WB, Hyer CF. et al. Osteochondral lesions of the talus: predictors of clinical outcome. Foot Ankle Int 2011; 32: 1045-1051
  • 27 Zengerink M, Struijs PA, Tol JL. et al. Treatment of osteochondral lesions of the talus: a systematic review. Knee Surg Sports Traumatol Arthrosc 2010; 18: 238-246
  • 28 Parisien JS. Arthroscopic treatment of osteochondral lesions of the talus. Am J Sports Med 1986; 14: 211-217
  • 29 Winalski CS, Alparslan L. Imaging of articular cartilage injuries of the lower extremity. Semin Musculoskelet Radiol 2008; 12: 283-301
  • 30 Bosien WR, Staples OS, Russell SW. Residual disability following acute ankle sprains. J Bone Joint Surg Am 1955; 37-A: 1237-1243
  • 31 Takao M, Uchio Y, Naito K. et al. Arthroscopic assessment for intra-articular disorders in residual ankle disability after sprain. Am J Sports Med 2005; 33: 686-692
  • 32 Von Stillfried E, Weber MA. Aseptische Osteonekrosen bei Kindern und Jugendlichen. Orthopäde 2014; 43: 750-757
  • 33 Becher C, Driessen A, Thermann H. Microfracture technique for the treatment of articular cartilage lesions of the talus. Orthopäde 2008; 37: 196-203
  • 34 Kuni B, Schmitt H, Chloridis D. et al. Clinical and MRI results after microfracture of osteochondral lesions of the talus. Arch Orthop Trauma Surg 2012; 132: 1765-1771
  • 35 Berndt AL, Harty M. Transchondral fractures (osteochondritis dissecans) of the talus. J Bone Joint Surg 1959; 41: 988-1020
  • 36 International Cartilage Repair Society (ICRS). ICRS Cartilage Injury Evaluation Package 2000. Im Internet: http://cartilage.org/content/uploads/2014/10/ICRS_evaluation1-1.pdf ; Stand: 04.10.16
  • 37 Anderson IF, Crichton KJ, Grattan-Smith T. et al. Osteochondral fractures of the dome of the talus. J Bone Joint Surg Am 1989; 71: 1143-1152
  • 38 Dipaola JD, Nelson DW, Colville MR. Characterizing osteochondral lesions by magnetic resonance imaging. Arthroscopy 1991; 7: 101-104
  • 39 Nelson DW, Dipaola J, Colville M. et al. Osteochondritis dissecans of the talus and knee: prospective comparison of MR and arthroscopic classifications. J Comput Assist Tomogr 1990; 14: 804-808
  • 40 Griffith JF, Lau DT, Yeung DK. et al. High-resolution MR imaging of talar osteochondral lesions with new classification. Skeletal Radiol 2012; 41: 387-399
  • 41 Elias I, Jung JW, Raikin SM. et al. Osteochondral lesions of the talus: change in MRI findings over time in talar lesions without operative intervention and implications for staging systems. Foot Ankle Int 2006; 27: 157-166
  • 42 Kijowski R, Blankenbaker DG, Shinki K. et al. Juvenile versus adult osteochondritis dissecans of the knee: appropriate MR imaging criteria for nstability. Radiology 2008; 248: 571-578
  • 43 De Smet AA, Ilahi OA, Graf BK. Reassessment of the MR criteria for stability of osteochondritis dissecans in the knee and ankle. Skeletal Radiol 1996; 25: 159-163
  • 44 Choi YS, Potter HG, Chun TJ. MR imaging of cartilage repair in the knee and ankle. Radiographics 2008; 28: 1043-1059
  • 45 Murawski CD, Kennedy JG. Operative treatment of osteochondral lesions of the talus. J Bone Joint Surg Am 2013; 95: 1045-1054
  • 46 Cuttica DJ, Shockley JA, Hyer CF. et al. Correlation of MRI edema and clinical outcomes following microfracture of osteochondral lesions of the talus. Foot Ankle Spec 2011; 4: 274-279
  • 47 Burstein D, Velyvis J, Scott KT. et al. Protocol issues for delayed Gd(DTPA)(2)-enhanced MRI (dGEMRIC) for clinical evaluation of articular cartilage. Magn Reson Med 2001; 45: 36-41
  • 48 Rehnitz C, Weber MA. Morphologische und funktionelle Knorpeldiagnostik. Orthopäde 2015; 44: 317-336
  • 49 Zilkens C, Jäger M, Bittersohl B. et al. Delayed Gadolinium Enhanced MRI of Cartilage (dGEMRIC) – Molekulare MRT-Bildgebung des Hüftgelenkknorpels. Orthopäde 2009; 38: 591-599
  • 50 Liess C, Lüsse S, Karger N. et al. Detection of changes in cartilage water content using MRI T2-mapping in vivo. Osteoarthritis Cartilage 2002; 10: 907-913