Planta Med 2017; 83(12/13): 1097-1102
DOI: 10.1055/s-0043-110141
Natural Product Chemistry and Analytical Studies
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Aristolic Acid Derivatives from the Bark of Antidesma ghaesembilla [*]

Sibylle Schäfer
Institute of Pharmacy, Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
,
Stefan Schwaiger
Institute of Pharmacy, Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
,
Hermann Stuppner
Institute of Pharmacy, Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
› Author Affiliations
Further Information

Publication History

received 06 February 2017
revised 20 April 2017

accepted 24 April 2017

Publication Date:
12 May 2017 (online)

Abstract

Antidesma ghaesembilla is an important medicinal and food plant in many Asian countries. Ten substances could be isolated from the dichloromethane and methanol extract: sitostenone (3), daucosterol (4), chavibetol (5), asperphenamate (6), protocatechuic acid (7), vanillic acid-4-O-β-D-glucoside (8), 1-O-β-D-glucopyranosyl-3-O-methyl-phloroglucinol (9), and aristolic acid II-8-O-β-D-glucoside (10), and two new aristolic acid derivatives, 10-amino-5,7-dimethoxy-aristolic acid II (= 6-amino-9,11-dimethoxyphenanthro[3,4-d]-1,3-dioxole-5-carboxylic acid; 1) and 5,7-dimethoxy-aristolochic acid II (= 9,11-dimethoxy-6-nitrophenantro[3,4-d]-1,3-dioxole-5-carboxylic acid; 2). Exposure to humans of some of these compounds is associated with a severe disease today known as aristolochic acid nephropathy. Therefore, the traditional usage of this plant has to be reconsidered carefully.

* Dedicated to Professor Dr. Max Wichtl in recognition of his outstanding contribution to phytotherapy research.


Supporting Information

 
  • References

  • 1 Li B, Hoffmann P. ANTIDESMA Burman ex Linnaeus, Sp. Pl. 2: 1027. 1753. Flora of China. Cambridge, MA: Missouri Botanical Garden, St. Louis, MO & Harvard University Herbaria; 2008: 209-211
  • 2 Chuakul W. Medicinal plants in the Khok Pho District, Pattani Province (Thailand). Thai J Phytopharm 2005; 12: 23-45
  • 3 Suksri S, Premcharoen S, Thawatphan C, Sangthongprow S. Ethnobotany in Bung Khong Long non-hunting area, northeast Thailand. Kasetsart J (Nat Sci) 2005; 39: 519-533
  • 4 Marczewski A, Ciepichal E, Canh LX, Bach TT, Swiezewska E, Chojnacki T. The search for polyprenols in dendroflora of Vietnam. Acta Biochim Pol 2007; 54: 727-732
  • 5 Nazarudeen A. Nutritional composition of some lesser-known fruits used by the ethnic communities and local folks of Kerala. Indian J Tradit Know 2010; 9: 398-402
  • 6 Laval P, Rakotoarison H, Savajol N, Vanny T. The contribution of wild medicinal plants towards poverty alleviation and health improvements: a case study in two villages in Mondulkiri Province, Cambodia. Cambodian J Nat Hist 2011; 2011: 29-39
  • 7 Habib R, Rahman M, Hamid K, Raihan O, Sayeed MA. Phytochemical screening, cytotoxicity, antioxidant capacity and antibacterial potentiality of methanol extract of Antidesma ghaesembilla Gaertn. Adv Nat Appl Sci 2011; 5: 69-74
  • 8 Parimala Devi G, Pooja Chowdary C, Prasanna D, Damodar T, Satish B, Ramamohan G. Pharmacognostical standardisation of Antidesma ghaesembhilla Gaertn, family: Phyllanthaceae. J Pharm Res 2012; 5: 1942-1945
  • 9 Buske A, Schmidt J, Hoffmann P. Chemotaxonomy of the tribe Antidesmeae (Euphorbiaceae): antidesmone and related compounds. Phytochemistry 2002; 60: 489-496
  • 10 Prabpai S, Wiyakrutta S, Sriubolmas N, Kongsaeree P. Antimycobacterial dihydronaphthalenone from the endophytic fungus Nodulisporium sp. of Antidesma ghaesembilla . Phytochem Lett 2015; 13: 375-378
  • 11 Sakunpak A, Panichayupakaranant P. Antibacterial activity of Thai edible plants against gastrointestinal pathogenic bacteria and isolation of a new broad spectrum antibacterial polyisoprenylated benzophenone, chamuangone. Food Chem 2012; 130: 826-831
  • 12 Habib MR, Rahman MM, Raihan MO, Nath A, Hossain MA, Sayeed MA, Rana MS, Rashid MA. Pharmacological evaluation of Antidesma ghaesembilla Gaertn fruits for central nervous system depressant activity. Bol Latinoam Caribe Plant Med Aromat 2012; 11: 188-195
  • 13 Kader SMA, Kabir MSH, Hasan M, Uddin MS, Ansary MAA, Noman MAA, Zaheed F, Hossain MR, Habib MZ, Hossain MI, Hasanat A, Islam MR. Antithrombotic, cytotoxic and antibacterial activities of methanol extract of Antidesma ghaesembilla Gaertn leaves. Int J Pharm 2016; 6: 45-52
  • 14 Chen YC, Cheng MJ, Lee SJ, Tsai IL, Chen IS. Chemical constituents from the root of Antidesma pentandrum var. barbatum . J Chin Chem Soc 2007; 54: 1325-1332
  • 15 Urzúa A, Olguín A, Santander R. Aristolochic acids in the roots of Aristolochia chilensis, a dangerous Chilean medicinal plant. J Chil Chem Soc 2013; 58: 2089-2091
  • 16 Wen YJ, Su T, Tang JW, Zhang CY, Wang X, Cai SQ, Li XM. Cytotoxicity of phenanthrenes extracted from Aristolochia contorta in human proximal tubular epithelial cell line. Nephron Exp Nephrol 2006; 103: e95-e102
  • 17 Michl J, Ingrouille MJ, Simmonds MS, Heinrich M. Naturally occurring aristolochic acid analogues and their toxicities. Nat Prod Rep 2014; 31: 676-693
  • 18 Wij M, Rangaswami S. Chemical components of Dioscorea bulbifera: isolation and structure of a new dihydrophenanthrene (2,4,6,7-tetrahydroxy-9,10-dihydrophenanthrene) and a new phenanthrene. Indian J Chem B 1978; 16 B: 643-644
  • 19 Priestap HA, Barbieri MA. Conversion of aristolochic acid I into aristolic acid by reaction with cysteine and glutathione: biological implications. J Nat Prod 2013; 76: 965-968
  • 20 Faizi S, Ali M, Saleem R, Irfanullah M, Bibi S. Complete H-1 and C-13 NMR assignments of stigma-5-en-3-O-beta-glucoside and its acetyl derivative. Magn Reson Chem 2001; 39: 399-405
  • 21 Kontiza I, Abatis D, Malakate K, Vagias C, Roussis V. 3-Keto steroids from the marine organisms Dendrophyllia cornigera and Cymodocea nodosa . Steroids 2006; 71: 177-181
  • 22 Fujimoto GI, Jacobson AE. Preparation of beta-sitosterol. J Org Chem 1964; 29: 3377-3381
  • 23 Ganenko TV, Khamidullina EA, Medvedeva SA. Chemistry of Pinus sylvestris cones. Chem Nat Compd 2006; 42: 612
  • 24 Rathee JS, Patro BS, Mula S, Gamre S, Chattopadhyay S. Antioxidant activity of Piper betel leaf extract and its constituents. J Agr Food Chem 2006; 54: 9046-9054
  • 25 Santos BCB, Silva JCT, Guerrero PG, Leitao GG, Barata LES. Isolation of chavibetol from essential oil of Pimenta pseudocaryophyllus leaf by high-speed counter-current chromatography. J Chromatogr A 2009; 1216: 4303-4306
  • 26 Rimando AM, Han BH, Park JH, Cantoria MC. Studies on the constituents of Philippine Piper betle leaves. Arch Pharm Res 1986; 9: 93-97
  • 27 Catalan CAN, de Heluani CS, Kotowicz C, Gedris TE, Herz W. A linear sesterterpene, two squalene derivatives and two peptide derivatives from Croton hieronymi . Phytochemistry 2003; 64: 625-629
  • 28 Pomini AM, Ferreira DT, Braz-Filho R, Saridakis HO, Schmitz W, Ishikawa NK, Faccione M. A new method for asperphenamate synthesis and its antimicrobial activity evaluation. Nat Prod Res 2006; 20: 537-541
  • 29 Banerji A, Ray R. Auranamide, a new phenylalanine derivative isolated from Piper aurantiacum Wall. Indian J Chem B 1981; 20: 597-598
  • 30 Zhang HL, Nagatsu A, Okuyama H, Mizukami H, Sakakibara J. Sesquiterpene glycosides from cotton oil cake. Phytochemistry 1998; 48: 665-668
  • 31 Flamini G, Antognoli E, Morelli I. Two flavonoids and other compounds from the aerial parts of Centaurea bracteata from Italy. Phytochemistry 2001; 57: 559-564
  • 32 Dini I, Tenore GC, Dini A. Phenolic constituents of Kancolla seeds. Food Chem 2004; 84: 163-168
  • 33 Regos I, Urbanella A, Treutter D. Identification and quantification of phenolic compounds from the forage legume sainfoin (Onobrychis viciifolia). J Agr Food Chem 2009; 57: 5843-5852
  • 34 Liu P, Guo H, Tian Y, Wang Q, Guo D. Benzoic acid allopyranosides from the bark of Pseudolarix kaempferi . Phytochemistry 2006; 67: 1395-1398
  • 35 Johansen KT, Wubshet SG, Nyberg NT, Jaroszewski JW. From retrospective assessment to prospective decisions in natural product isolation: HPLC-SPE-NMR analysis of Carthamus oxyacantha . J Nat Prod 2011; 74: 2454-2461
  • 36 Sakar MK, Petereit F, Nahrstedt A. 2 Phloroglucinol glucosides, flavan gallates and flavonol glycosides from Sedum sediforme flowers. Phytochemistry 1993; 33: 171-174
  • 37 Yoshikawa K, Sugawara S, Arihara S. Phenylpropanoids and other secondary metabolites from fresh fruits of Picrasma quassioides . Phytochemistry 1995; 40: 253-256
  • 38 Yamamoto M, Akita T, Koyama Y, Sueyoshi E, Matsunami K, Otsuka H, Shinzato T, Takashima A, Aramoto M, Takeda Y. Euodionosides A–G: megastigmane glucosides from leaves of Euodia meliaefolia . Phytochemistry 2008; 69: 1586-1596