Neurology International Open 2017; 01(03): E171-E181
DOI: 10.1055/s-0043-106704
Review
© Georg Thieme Verlag KG Stuttgart · New York

Pathology and Pathogenesis of Progressive Multiple Sclerosis: Concepts and Controversies

Adrian-Minh Schumacher*
1   Institute of Clinical Neuroimmunology, Biomedical Center and University Hospital, Ludwig-Maximilians Universität München, Munich, Germany
,
Christoph Mahler*
1   Institute of Clinical Neuroimmunology, Biomedical Center and University Hospital, Ludwig-Maximilians Universität München, Munich, Germany
,
Martin Kerschensteiner
1   Institute of Clinical Neuroimmunology, Biomedical Center and University Hospital, Ludwig-Maximilians Universität München, Munich, Germany
› Author Affiliations
Further Information

Publication History

Publication Date:
11 August 2017 (online)

Abstract

Multiple sclerosis (MS) is an inflammatory disease of the central nervous system that initially is often dominated by relapsing-remitting neurological symptoms. With increasing disease duration these relapses are more and more superimposed by a progressive disease process that leads to an irreversible accumulation of motor, sensory and cognitive deficits. This progressive phase of MS is still only incompletely understood and by and large refractory to therapy. Here we aim to use recent pathological and pathomechanistic insights to outline a unifying concept of progressive MS. Based on this view of the disease we examine current controversies surrounding progressive MS. We discuss whether neurodegenerative or inflammatory processes drive progression, question whether the classification of primary and secondary progressive MS is all that useful and deliberate, which therapeutic strategies are best suited to limit the insidious neurological decline of progressive MS patients.

* The authors contributed in equally to this article.


 
  • Literatur

  • 1 Ontaneda D, Thompson AJ, Fox RJ. et al. Progressive multiple sclerosis: prospects for disease therapy, repair, and restoration of function. Lancet 2017; 389: 1357-1366
  • 2 Charcot J-M. Histologie de la sclérose en plaques. 1868;
  • 3 Compston A, Coles A. Multiple sclerosis. Lancet 2008; 372: 1502-1517
  • 4 Frischer JM, Weigand SD, Guo Y. et al. Clinical and pathological insights into the dynamic nature of the white matter multiple sclerosis plaque. Ann Neurol 2015; 78: 710-721
  • 5 Absinta M, Sati P, Schindler M. et al. Persistent 7-tesla phase rim predicts poor outcome in new multiple sclerosis patient lesions. J Clin Invest 2016; 126: 2597-2609
  • 6 Goldschmidt T, Antel J, König FB. et al. Remyelination capacity of the MS brain decreases with disease chronicity. Neurology 2009; 72: 1914-1921
  • 7 Miron VE, Boyd A, Zhao J-W. et al. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat Neurosci 2013; 16: 1211-1218
  • 8 Lassmann H, van Horssen J, Mahad D. Progressive multiple sclerosis: pathology and pathogenesis. Nat Rev Neurol 2012; 8: 647-656
  • 9 Kutzelnigg A, Lucchinetti CF, Stadelmann C. et al. Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain 2005; 128: 2705-2712
  • 10 Herranz E, Giannì C, Louapre C. et al. Neuroinflammatory component of gray matter pathology in multiple sclerosis. Ann Neurol 2016; 80: 776-790
  • 11 Kutzelnigg A, Lassmann H. Cortical demyelination in multiple sclerosis: A substrate for cognitive deficits?. J Neurol Sci 2006; 245: 123-126
  • 12 Haider L, Zrzavy T, Hametner S. et al. The topograpy of demyelination and neurodegeneration in the multiple sclerosis brain. Brain 2016; 139: 807-815
  • 13 Vercellino M, Plano F, Votta B. et al. Grey matter pathology in multiple sclerosis. J Neuropathol Exp Neurol 2005; 64: 1101-1107
  • 14 Gilmore CP, Bö L, Owens T. et al. Spinal cord gray matter demyelination in multiple sclerosis-a novel pattern of residual plaque morphology. Brain Pathol 2006; 16: 202-208
  • 15 Peterson JW, Bö L, Mörk S. et al. Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions. Ann Neurol 2001; 50: 389-400
  • 16 Howell OW, Reeves CA, Nicholas R. et al. Meningeal inflammation is widespread and linked to cortical pathology in multiple sclerosis. Brain 2011; 134: 2755-2771
  • 17 Magliozzi R, Howell OW, Reeves C. et al. A Gradient of neuronal loss and meningeal inflammation in multiple sclerosis. Ann Neurol 2010; 68: 477-493
  • 18 Fischer MT, Wimmer I, Höftberger R. et al. Disease-specific molecular events in cortical multiple sclerosis lesions. Brain 2013; 136: 1799-1815
  • 19 Magliozzi R, Howell O, Vora A. et al. Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain 2007; 130: 1089-1104
  • 20 Damjanovic D, Valsasina P, Rocca MA. et al. Hippocampal and deep gray matter nuclei atrophy is relevant for explaining cognitive impairment in MS: A multicenter study. AJNR Am J Neuroradiol 2017; 38: 18-24
  • 21 Schlaeger R, Papinutto N, Zhu AH. et al. Association between thoracic spinal cord gray matter atrophy and disability in multiple sclerosis. JAMA Neurol 2015; 72: 897-904
  • 22 Popescu V, Klaver R, Voorn P. et al. What drives MRI-measured cortical atrophy in multiple sclerosis?. Mult Scler 2015; 21: 1280-1290
  • 23 Jürgens T, Jafari M, Kreutzfeldt M. et al. Reconstruction of single cortical projection neurons reveals primary spine loss in multiple sclerosis. Brain 2016; 139: 39-46
  • 24 Albert M, Barrantes-Freer A, Lohrberg M. et al. Synaptic pathology in the cerebellar dentate nucleus in chronic multiple sclerosis. Brain Pathol 2016; DOI: 10.1111/bpa.12450.
  • 25 Kreutzfeldt M, Bergthaler A, Fernandez M. et al. Neuroprotective intervention by interferon-γ blockade prevents CD8+ T cell-mediated dendrite and synapse loss. J Exp Med 2013; 210: 2087-2103
  • 26 Rossi S, Motta C, Studer V. et al. Tumor necrosis factor is elevated in progressive multiple sclerosis and causes excitotoxic neurodegeneration. Mult Scler 2014; 20: 304-312
  • 27 Gardner C, Magliozzi R, Durrenberger PF. et al. Cortical grey matter demyelination can be induced by elevated pro-inflammatory cytokines in the subarachnoid space of MOG-immunized rats. Brain 2013; 136: 3596-3608
  • 28 Merkler D, Ernsting T, Kerschensteiner M. et al. A new focal EAE model of cortical demyelination: Multiple sclerosis-like lesions with rapid resolution of inflammation and extensive remyelination. Brain 2006; 129: 1972-1983
  • 29 Zamanian JL, Xu L, Foo LC. et al. Genomic analysis of reactive astrogliosis. J Neurosci 2012; 32: 6391-6410
  • 30 Liddelow SA, Guttenplan KA, Clarke LE. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 2017; 541: 481-487
  • 31 Mayo L, Trauger SA, Blain M. et al. Regulation of astrocyte activation by glycolipids drives chronic CNS inflammation. Nat Med 2014; 20: 1147-1156
  • 32 Habbas S, Santello M, Becker D. et al. Neuroinflammatory TNFα impairs memory via astrocyte signaling. Cell 2015; 163: 1730-1741
  • 33 Schafer DP, Lehrman EK, Kautzman AG. et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 2012; 74: 691-705
  • 34 Watkins LM, Neal JW, Loveless S. et al. Complement is activated in progressive multiple sclerosis cortical grey matter lesions. J Neuroinflammation 2016; 13: 161
  • 35 Nikić I, Merkler D, Sorbara C. et al. A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis. Nat Med 2011; 17: 495-499
  • 36 Haider L, Fischer MT, Frischer JM. et al. Oxidative damage in multiple sclerosis lesions. Brain 2011; 134: 1914-1924
  • 37 Murphy MP. How mitochondria produce reactive oxygen species. Biochem J 2009; 417: 1-13
  • 38 Prousek J. Fenton chemistry in biology and medicine. J Macromol Sci Part A Pure Appl Chem 2007; 79: 2325
  • 39 Dal-Bianco A, Grabner G, Kronnerwetter C. et al. Slow expansion of multiple sclerosis iron rim lesions: Pathology and 7T magnetic resonance imaging. Acta Neuropathol 2017; 133: 25-42
  • 40 Azevedo CJ, John K, Philip C. et al. In vivo evidence of glutamate toxicity in multiple sclerosis. Ann Neurol 2014; 76: 269-278
  • 41 Macrez R, Stys PK, Vivien D. et al. Mechanisms of glutamate toxicity in multiple sclerosis: Biomarker and therapeutic opportunities. Lancet Neurol 2016; 15: 1089-1102
  • 42 Evonuk KS, Baker BJ, Doyle RE. et al. Inhibition of system Xc(-) transporter attenuates autoimmune inflammatory demyelination. J Immunol 2015; 195: 450-463
  • 43 Pitt D, Nagelmeier IE, Wilson HC. et al. Glutamate uptake by oligodendrocytes: Implications for excitotoxicity in multiple sclerosis. Neurology 2003; 61: 1113-1120
  • 44 Sulkowski G, Dabrowska-Bouta B, Chalimoniuk M. et al. Effects of antagonists of glutamate receptors on pro-inflammatory cytokines in the brain cortex of rats subjected to experimental autoimmune encephalomyelitis. J Neuroimmunol 2013; 261: 67-76
  • 45 Ouardouz M, Coderre E, Basak A. et al. Glutamate receptors on myelinated spinal cord axons: I. GluR6 kainate receptors. Ann Neurol 2009; 65: 151-159
  • 46 Affaticati P, Mignen O, Jambou F. et al. Sustained calcium signalling and caspase-3 activation involve NMDA receptors in thymocytes in contact with dendritic cells. Cell Death Differ 2011; 18: 99-108
  • 47 Saab AS, Tzvetavona ID, Trevisiol A. et al. Oligodendroglial NMDA receptors regulate glucose import and axonal energy metabolism. Neuron 2016; 91: 119-132
  • 48 Hohlfeld R, Kerschensteiner M. Antiglutamatergic therapy for multiple sclerosis?. Lancet Neurol 2016; 15: 1003-1004
  • 49 Trapp BD, Stys PK. Virtual hypoxia and chronic necrosis of demyelinated axons in multiple sclerosis. Lancet Neurol 2009; 8: 280-291
  • 50 Simons M, Misgeld T, Kerschensteiner M. A unified cell biological perspective on axon–myelin injury. J Cell Biol 2014; 206: 335-345
  • 51 Fünfschilling U, Supplie LM, Mahad D. et al. Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 2012; 485: 517-521
  • 52 Snaidero N, Velte C, Myllykoski M. et al. Antagonistic functions of MBP and CNP establish cytosolic channels in CNS myelin. Cell Rep 2017; 18: 314-323
  • 53 Witte ME, Mahad DJ, Lassmann H. et al. Mitochondrial dysfunction contributes to neurodegeneration in multiple sclerosis. Trends Mol Med 2014; 20: 179-187
  • 54 Mahad DJ, Ziabreva I, Campbell G. et al. Mitochondrial changes within axons in multiple sclerosis. Brain 2009; 132: 1161-1174
  • 55 Campbell GR, Ziabreva I, Reeve AK. et al. Mitochondrial DNA deletions and neurodegeneration in multiple sclerosis. Ann Neurol 2011; 69: 481-492
  • 56 Ziabreva I, Campbell G, Rist J. et al. Injury and differentiation following inhibition of mitochondrial respiratory chain complex IV in rat oligodendrocytes. Glia 2010; 58: 1827-1837
  • 57 Sorbara CD, Wagner NE, Ladwig A. et al. Pervasive axonal transport deficits in multiple sclerosis models. Neuron 2014; 84: 1183-1190
  • 58 Hemmer B, Kerschensteiner M, Korn T. Role of the innate and adaptive immune responses in the course of multiple sclerosis. Lancet Neurol 2015; 14: 406-419
  • 59 Calabrese M, Romualdi C, Poretto V. et al. The changing clinical course of multiple sclerosis: a matter of gray matter. Ann Neurol 2013; 74: 76-83
  • 60 Farh KK-H, Marson A, Zhu J. et al. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature 2015; 518: 337-343
  • 61 Frischer JM, Bramow S, Dal-Bianco A. et al. The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain 2009; 132: 1175-1189
  • 62 Jokubaitis VG, Spelman T, Kalincik T. et al. Predictors of long-term disability accrual in relapse-onset multiple sclerosis. Ann Neurol 2016; 80: 89-100
  • 63 Steenwijk MD, Geurts JJG, Daams M. et al. Cortical atrophy patterns in multiple sclerosis are non-random and clinically relevant. Brain 2016; 139: 115-126
  • 64 Bermel RA, Bakshi R. The measurement and clinical relevance of brain atrophy in multiple sclerosis. Lancet Neurol 2006; 5: 158-170
  • 65 Ontaneda D, Fox RJ, Chataway J. Clinical trials in progressive multiple sclerosis: lessons learned and future perspectives. Lancet Neurol 2015; 14: 208-223
  • 66 Weinshenker BG, Bulman D, Carriere W. et al. A comparison of sporadic and familial multiple sclerosis. Neurology 1990; 40: 1354-1358
  • 67 Kantarci OH, Lebrun C, Siva A. et al. Primary progressive multiple sclerosis evolving from radiologically isolated syndrome. Ann Neurol 2016; 79: 288-294
  • 68 Frischer JM, Weigand SD, Guo Y. et al. Clinical and pathological insights into the dynamic nature of the white matter multiple sclerosis plaque. Ann Neurol 2015; 78: 710-721
  • 69 Lublin FD, Reingold SC, Cohen JA. et al. Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology 2014; 83: 278-286
  • 70 Komori M, Lin YC, Cortese I. et al. Insufficient disease inhibition by intrathecal rituximab in progressive multiple sclerosis. Ann Clin Transl Neurol 2016; 3: 166-179
  • 71 Raftopoulos R, Hickman SJ, Toosy A. et al. Phenytoin for neuroprotection in patients with acute optic neuritis: A randomised, placebo-controlled, phase 2 trial. Lancet Neurol 2016; 15: 259-269
  • 72 Tourbah A, Lebrun-Frenay C, Edan G. et al. MD1003 (high-dose biotin) for the treatment of progressive multiple sclerosis: A randomised, double-blind, placebo-controlled study. Mult Scler 2016; 22: 1719-1731
  • 73 Cadavid DB. Efficacy analysis of the Anti-LINGO-1 monoclonal antibody BIIB033 in acute optic neuritis: The RENEW trial. Neurology 84 (Suppl. 14) P7202 2015
  • 74 Campbell E, Coulter EH, Mattison PG et al. Physiotherapy rehabilitation for people with progressive multiple sclerosis: A systematic review. Arch Phys Med Rehabil 2016; 97: 141–151.e143
  • 75 Campbell E, Coulter EH, Mattison PG. et al. Physiotherapy rehabilitation for people with progressive multiple sclerosis: A systematic review. Arch Phys Med Rehabil 2016; 97: 141-151.e143