Journal of Pediatric Neurology 2023; 21(01): 023-032
DOI: 10.1055/s-0042-1760242
Review Article

An Overview of Genes Involved in the Pure Joubert Syndrome and in Joubert Syndrome-Related Disorders (JSRD)

Maria Amorini
1   Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
,
Giulia Iapadre
2   Department of Pediatrics, University of L'Aquila, L'Aquila, Italy
,
Alessio Mancuso
1   Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
,
Ida Ceravolo
3   Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
,
Giovanni Farello
4   Department of Life, Health and Environmental Sciences, Pediatric Clinic, Coppito (AQ), Italy
,
Annarita Scardamaglia
5   Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.
,
Simone Gramaglia
1   Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
,
Antonio Ceravolo
6   Department of Pediatrics, Cinquefrondi (RC), Italy
,
Annamaria Salpietro
7   Pediatrics Clinic, ASST-Spedali Civili of Brescia, Brescia, Italy
,
Caterina Cuppari
1   Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
› Author Affiliations

Abstract

Joubert syndrome (JS) is a rare autosomal recessive disease characterized by a peculiar brain malformation, hypotonia, ataxia, developmental delay, abnormal eye movements, and neonatal breathing abnormalities. This picture is often associated with variable multiorgan involvement, mainly of the retina, kidneys and liver, defining a group of conditions termed syndrome and Joubert syndrome-related disorders (JSRD). Currently, more than 30 causative genes have been identified, involved in the development and stability of the primary cilium. Correlations genotype–phenotype are emerging between clinical presentations and mutations in JSRD genes, with implications in terms of molecular diagnosis, prenatal diagnosis, follow-up, and management of mutated patients.

Authors' Contributions

M.A. and G.F. did the conceptualization. I.C. and A.C. did the investigation. G.I. and S.G. contributed toward resources. A.S. and A.M. contributed toward data curation. EG wrote and prepared original draft. G.I. wrote and edited the review. C.C. did the supervision.


All authors have read and agreed to the published version of the manuscript.


Data Availability Statement

The data presented in this study are available on request from the corresponding author.




Publication History

Received: 22 August 2022

Accepted: 27 October 2022

Article published online:
05 January 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Joubert M, Eisenring JJ, Andermann F. Familial dysgenesis of the vermis: a syndrome of hyperventilation, abnormal eye movements and retardation. Neurology 1968; 18 (03) 302-303
  • 2 Maria BL, Hoang KB, Tusa RJ. et al. “Joubert syndrome” revisited: key ocular motor signs with magnetic resonance imaging correlation. J Child Neurol 1997; 12 (07) 423-430
  • 3 Maria BL, Quisling RG, Rosainz LC. et al. Molar tooth sign in Joubert syndrome: clinical, radiologic, and pathologic significance. J Child Neurol 1999; 14 (06) 368-376
  • 4 Satran D, Pierpont ME, Dobyns WB. Cerebello-oculo-renal syndromes including Arima, Senior-Löken and COACH syndromes: more than just variants of Joubert syndrome. Am J Med Genet 1999; 86 (05) 459-469
  • 5 Fiorillo C, Moro F, Brisca G. et al. Beyond spinal muscular atrophy with lower extremity dominance: cerebellar hypoplasia associated with a novel mutation in BICD2. Eur J Neurol 2016; 23 (04) e19-e21
  • 6 Accogli A, Addour-Boudrahem N, Srour M. Diagnostic approach to cerebellar hypoplasia. Cerebellum 2021; 20 (04) 631-658
  • 7 Accogli A, Addour-Boudrahem N, Srour M. Neurogenesis, neuronal migration, and axon guidance. Handb Clin Neurol 2020; 173: 25-42
  • 8 Salpietro CD, Briuglia S, Rigoli L, Merlino MV, Dallapiccola B. Confirmation of Nablus mask-like facial syndrome. Am J Med Genet A 2003; 121A (03) 283-285
  • 9 Salpietro V, Phadke R, Saggar A. et al. Zellweger syndrome and secondary mitochondrial myopathy. Eur J Pediatr 2015; 174 (04) 557-563
  • 10 Salpietro V, Zollo M, Vandrovcova J. et al; SYNAPS Study Group. The phenotypic and molecular spectrum of PEHO syndrome and PEHO-like disorders. Brain 2017; 140 (08) e49
  • 11 Valente EM, Silhavy JL, Brancati F. et al; International Joubert Syndrome Related Disorders Study Group. Mutations in CEP290, which encodes a centrosomal protein, cause pleiotropic forms of Joubert syndrome. Nat Genet 2006; 38 (06) 623-625
  • 12 Valente EM, Salpietro DC, Brancati F. et al. Description, nomenclature, and mapping of a novel cerebello-renal syndrome with the molar tooth malformation. Am J Hum Genet 2003; 73 (03) 663-670
  • 13 Brancati F, Iannicelli M, Travaglini L. et al; International JSRD Study Group. MKS3/TMEM67 mutations are a major cause of COACH Syndrome, a Joubert syndrome related disorder with liver involvement. Hum Mutat 2009; 30 (02) E432-E442
  • 14 Brancati F, Travaglini L, Zablocka D. et al; International JSRD Study Group. RPGRIP1L mutations are mainly associated with the cerebello-renal phenotype of Joubert syndrome-related disorders. Clin Genet 2008; 74 (02) 164-170
  • 15 Manole A, Jaunmuktane Z, Hargreaves I. et al. Clinical, pathological and functional characterization of riboflavin-responsive neuropathy. Brain 2017; 140 (11) 2820-2837
  • 16 Coleman J, Jouannot O, Ramakrishnan SK. et al. PRRT2 regulates synaptic fusion by directly modulating SNARE complex assembly. Cell Rep 2018; 22 (03) 820-831
  • 17 Salpietro V, Lin W, Delle Vedove A. et al; SYNAPS Study Group. Homozygous mutations in VAMP1 cause a presynaptic congenital myasthenic syndrome. Ann Neurol 2017; 81 (04) 597-603
  • 18 Piard J, Umanah GKE, Harms FL. et al. A homozygous ATAD1 mutation impairs postsynaptic AMPA receptor trafficking and causes a lethal encephalopathy. Brain 2018; 141 (03) 651-661
  • 19 Salpietro V, Ruggieri M. Pseudotumor cerebri pathophysiology: the likely role of aldosterone. Headache 2014; 54 (07) 1229
  • 20 Pavone P, Briuglia S, Falsaperla R. et al. Wide spectrum of congenital anomalies including choanal atresia, malformed extremities, and brain and spinal malformations in a girl with a de novo 5.6-Mb deletion of 13q12.11-13q12.13. Am J Med Genet A 2014; 164A (07) 1734-1743
  • 21 Pellerin D, Ellezam B, Korathanakhun P. et al. Multisystem proteinopathy associated with a VCP G156S mutation in a French Canadian Family. Can J Neurol Sci 2020; 47 (03) 412-415
  • 22 Chirico V, Lacquaniti A, Salpietro V, Buemi M, Salpietro C, Arrigo T. Central precocious puberty: from physiopathological mechanisms to treatment. J Biol Regul Homeost Agents 2014; 28 (03) 367-375
  • 23 Bell S, Rousseau J, Peng H. et al. Mutations in ACTL6B cause neurodevelopmental deficits and epilepsy and lead to loss of dendrites in human neurons. Am J Hum Genet 2019; 104 (05) 815-834
  • 24 Salpietro V, Chimenz R, Arrigo T, Ruggieri M. Pediatric idiopathic intracranial hypertension and extreme childhood obesity: a role for weight gain. J Pediatr 2013; 162 (05) 1084
  • 25 Papandreou A, Schneider RB, Augustine EF. et al. Delineation of the movement disorders associated with FOXG1 mutations. Neurology 2016; 86 (19) 1794-1800
  • 26 Chirico V, Rigoli L, Lacquaniti A. et al. Endocrinopathies, metabolic disorders, and iron overload in major and intermedia thalassemia: serum ferritin as diagnostic and predictive marker associated with liver and cardiac T2* MRI assessment. Eur J Haematol 2015; 94 (05) 404-412
  • 27 Chelban V, Wilson MP, Warman Chardon J. et al; Care4Rare Canada Consortium and the SYNaPS Study Group. PDXK mutations cause polyneuropathy responsive to pyridoxal 5′-phosphate supplementation. Ann Neurol 2019; 86 (02) 225-240
  • 28 Ghosh SG, Becker K, Huang H. et al. Biallelic mutations in ADPRHL2, encoding ADP-ribosylhydrolase 3, lead to a degenerative pediatric stress-induced epileptic ataxia syndrome. Am J Hum Genet 2018; 103 (03) 431-439
  • 29 Efthymiou S, Salpietro V, Malintan N. et al; SYNAPS Study Group. Biallelic mutations in neurofascin cause neurodevelopmental impairment and peripheral demyelination. Brain 2019; 142 (10) 2948-2964
  • 30 Greco M, Ferrara P, Farello G, Striano P, Verrotti A. Electroclinical features of epilepsy associated with 1p36 deletion syndrome: a review. Epilepsy Res 2018; 139: 92-101
  • 31 Sheldon CA, Paley GL, Xiao R. et al. Pediatric idiopathic intracranial hypertension: age, gender, and anthropometric features at diagnosis in a large, retrospective, multisite cohort. Ophthalmology 2016; 123 (11) 2424-2431
  • 32 Pedullà M, Miraglia Del Giudice M, Fierro V. et al. Atopy as a risk factor for thyroid autoimmunity in children. J Biol Regul Homeost Agents 2012; 26 (Suppl. 01) S9-S14
  • 33 Ruggieri M, Polizzi A, Strano S. et al. Mixed vascular nevus syndrome: a report of four new cases and a literature review. Quant Imaging Med Surg 2016; 6 (05) 515-524
  • 34 Giacobbe A, Granese R, Grasso R. et al. Association between maternal serum high mobility group box 1 levels and pregnancy complicated by gestational diabetes mellitus. Nutr Metab Cardiovasc Dis 2016; 26 (05) 414-418
  • 35 Salpietro V, Ruggieri M, Sancetta F. et al. New insights on the relationship between pseudotumor cerebri and secondary hyperaldosteronism in children. J Hypertens 2012; 30 (03) 629-630
  • 36 Pavlidou E, Salpietro V, Phadke R. et al. Pontocerebellar hypoplasia type 2D and optic nerve atrophy further expand the spectrum associated with selenoprotein biosynthesis deficiency. Eur J Paediatr Neurol 2016; 20 (03) 483-488
  • 37 Granata F, Morabito R, Mormina E. et al. 3T double inversion recovery magnetic resonance imaging: diagnostic advantages in the evaluation of cortical development anomalies. Eur J Radiol 2016; 85 (05) 906-914
  • 38 Toldo I, Brunello F, Morao V. et al. First attack and clinical presentation of hemiplegic migraine in pediatric age: a multicenter retrospective study and literature review. Front Neurol 2019; 10: 1079
  • 39 Lionetti E, Francavilla R, Castellazzi AM. et al. Probiotics and Helicobacter pylori infection in children. J Biol Regul Homeost Agents 2012; 26 (Suppl. 01) S69-S76
  • 40 Leu C, Stevelink R, Smith AW. et al; Epi25 Consortium. Polygenic burden in focal and generalized epilepsies. Brain 2019; 142 (11) 3473-3481
  • 41 Niccolini F, Mencacci NE, Yousaf T. et al. PDE10A and ADCY5 mutations linked to molecular and microstructural basal ganglia pathology. Mov Disord 2018; 33 (12) 1961-1965
  • 42 Salpietro V, Perez-Dueñas B, Nakashima K. et al. A homozygous loss-of-function mutation in PDE2A associated to early-onset hereditary chorea. Mov Disord 2018; 33 (03) 482-488
  • 43 Mitsumoto H, Turner MR. All Delegates of the PLS Conference, et al. Preface: promoting research in PLS: current knowledge and future challenges. Amyotroph Lateral Scler Frontotemporal Degener 2020; 21 (Suppl. 01) 1-2
  • 44 Ruggieri M, Polizzi A, Schepis C. et al. Cutis tricolor: a literature review and report of five new cases. Quant Imaging Med Surg 2016; 6 (05) 525-534
  • 45 Salpietro V, Efthymiou S, Manole A. et al. A loss-of-function homozygous mutation in DDX59 implicates a conserved DEAD-box RNA helicase in nervous system development and function. Hum Mutat 2018; 39 (02) 187-192
  • 46 Brancati F, Dallapiccola B, Valente EM. Joubert syndrome and related disorders. Orphanet J Rare Dis 2010; 5: 20
  • 47 Phelps IG, Dempsey JC, Grout ME. et al. Interpreting the clinical significance of combined variants in multiple recessive disease genes: systematic investigation of Joubert syndrome yields little support for oligogenicity. Genet Med 2018; 20 (02) 223-233
  • 48 Millen KJ, Gleeson JG. Cerebellar development and disease. Curr Opin Neurobiol 2008; 18 (01) 12-19
  • 49 Chirico V, Ferraù V, Loddo I. et al. LMNA gene mutation as a model of cardiometabolic dysfunction: from genetic analysis to treatment response. Diabetes Metab 2014; 40 (03) 224-228
  • 50 Iannicelli M, Brancati F, Mougou-Zerelli S. et al; International JSRD Study Group. Novel TMEM67 mutations and genotype-phenotype correlates in meckelin-related ciliopathies. Hum Mutat 2010; 31 (05) E1319-E1331
  • 51 Putoux A, Thomas S, Coene KL. et al. KIF7 mutations cause fetal hydrolethalus and acrocallosal syndromes. Nat Genet 2011; 43 (06) 601-606
  • 52 Dafinger C, Liebau MC, Elsayed SM. et al. Mutations in KIF7 link Joubert syndrome with Sonic Hedgehog signaling and microtubule dynamics. J Clin Invest 2011; 121 (07) 2662-2667
  • 53 Garcia-Gonzalo FR, Corbit KC, Sirerol-Piquer MS. et al. A transition zone complex regulates mammalian ciliogenesis and ciliary membrane composition. Nat Genet 2011; 43 (08) 776-784
  • 54 Huang L, Szymanska K, Jensen VL. et al. TMEM237 is mutated in individuals with a Joubert syndrome related disorder and expands the role of the TMEM family at the ciliary transition zone. Am J Hum Genet 2011; 89 (06) 713-730
  • 55 Lee JE, Silhavy JL, Zaki MS. et al. CEP41 is mutated in Joubert syndrome and is required for tubulin glutamylation at the cilium. Nat Genet 2012; 44 (02) 193-199
  • 56 Lee JH, Silhavy JL, Lee JE. et al. Evolutionarily assembled cis-regulatory module at a human ciliopathy locus. Science 2012; 335 (6071): 966-969
  • 57 Valente EM, Logan CV, Mougou-Zerelli S. et al. Mutations in TMEM216 perturb ciliogenesis and cause Joubert, Meckel and related syndromes. Nat Genet 2010; 42 (07) 619-625
  • 58 Srour M, Schwartzentruber J, Hamdan FF. et al; FORGE Canada Consortium. Mutations in C5ORF42 cause Joubert syndrome in the French Canadian population. Am J Hum Genet 2012; 90 (04) 693-700
  • 59 Lopez E, Thauvin-Robinet C, Reversade B. et al. C5orf42 is the major gene responsible for OFD syndrome type VI. Hum Genet 2014; 133 (03) 367-377
  • 60 Thomas S, Wright KJ, Le Corre S. et al. A homozygous PDE6D mutation in Joubert syndrome impairs targeting of farnesylated INPP5E protein to the primary cilium. Hum Mutat 2014; 35 (01) 137-146
  • 61 Travaglini L, Brancati F, Attie-Bitach T. et al; International JSRD Study Group. Expanding CEP290 mutational spectrum in ciliopathies. Am J Med Genet A 2009; 149A (10) 2173-2180
  • 62 Travaglini L, Brancati F, Silhavy J. et al; International JSRD Study Group. Phenotypic spectrum and prevalence of INPP5E mutations in Joubert syndrome and related disorders. Eur J Hum Genet 2013; 21 (10) 1074-1078
  • 63 Chaki M, Airik R, Ghosh AK. et al. Exome capture reveals ZNF423 and CEP164 mutations, linking renal ciliopathies to DNA damage response signaling. Cell 2012; 150 (03) 533-548
  • 64 Srour M, Hamdan FF, Schwartzentruber JA. et al; FORGE Canada Consortium. Mutations in TMEM231 cause Joubert syndrome in French Canadians. J Med Genet 2012; 49 (10) 636-641
  • 65 Patzke S, Stokke T, Aasheim HC. CSPP and CSPP-L associate with centrosomes and microtubules and differently affect microtubule organization. J Cell Physiol 2006; 209 (01) 199-210
  • 66 Ascenti G, Zimbaro G, Mazziotti S. et al. Harmonic US imaging of vesicoureteric reflux in children: usefulness of a second generation US contrast agent. Pediatr Radiol 2004; 34 (06) 481-487
  • 67 Lacquaniti A, Chirico V, Donato V. et al. NGAL as an early biomarker of kidney disease in Joubert syndrome: three brothers compared. Ren Fail 2012; 34 (04) 495-498
  • 68 Rigoli L, Chimenz R, di Bella C. et al. Angiotensin-converting enzyme and angiotensin type 2 receptor gene genotype distributions in Italian children with congenital uropathies. Pediatr Res 2004; 56 (06) 988-993
  • 69 Tuz K, Bachmann-Gagescu R, O'Day DR. et al. Mutations in CSPP1 cause primary cilia abnormalities and Joubert syndrome with or without Jeune asphyxiating thoracic dystrophy. Am J Hum Genet 2014; 94 (01) 62-72 , 310
  • 70 Akizu N, Silhavy JL, Rosti RO. et al. Mutations in CSPP1 lead to classical Joubert syndrome. Am J Hum Genet 2014; 94 (01) 80-86
  • 71 Shaheen R, Shamseldin HE, Loucks CM. et al. Mutations in CSPP1, encoding a core centrosomal protein, cause a range of ciliopathy phenotypes in humans. Am J Hum Genet 2014; 94 (01) 73-79
  • 72 Thomas S, Legendre M, Saunier S. et al. TCTN3 mutations cause Mohr-Majewski syndrome. Am J Hum Genet 2012; 91 (02) 372-378
  • 73 Bielas SL, Silhavy JL, Brancati F. et al. Mutations in INPP5E, encoding inositol polyphosphate-5-phosphatase E, link phosphatidyl inositol signaling to the ciliopathies. Nat Genet 2009; 41 (09) 1032-1036
  • 74 Edvardson S, Shaag A, Zenvirt S. et al. Joubert syndrome 2 (JBTS2) in Ashkenazi Jews is associated with a TMEM216 mutation. Am J Hum Genet 2010; 86 (01) 93-97
  • 75 Jiang X, Hanna Z, Kaouass M, Girard L, Jolicoeur P. Ahi-1, a novel gene encoding a modular protein with WD40-repeat and SH3 domains, is targeted by the Ahi-1 and Mis-2 provirus integrations. J Virol 2002; 76 (18) 9046-9059
  • 76 Chih B, Liu P, Chinn Y. et al. A ciliopathy complex at the transition zone protects the cilia as a privileged membrane domain. Nat Cell Biol 2011; 14 (01) 61-72
  • 77 Saunier S, Calado J, Heilig R. et al. A novel gene that encodes a protein with a putative src homology 3 domain is a candidate gene for familial juvenile nephronophthisis. Hum Mol Genet 1997; 6 (13) 2317-2323
  • 78 Mollet G, Silbermann F, Delous M, Salomon R, Antignac C, Saunier S. Characterization of the nephrocystin/nephrocystin-4 complex and subcellular localization of nephrocystin-4 to primary cilia and centrosomes. Hum Mol Genet 2005; 14 (05) 645-656
  • 79 Konrad M, Saunier S, Heidet L. et al. Large homozygous deletions of the 2q13 region are a major cause of juvenile nephronophthisis. Hum Mol Genet 1996; 5 (03) 367-371
  • 80 Caridi G, Murer L, Bellantuono R. et al. Renal-retinal syndromes: association of retinal anomalies and recessive nephronophthisis in patients with homozygous deletion of the NPH1 locus. Am J Kidney Dis 1998; 32 (06) 1059-1062
  • 81 Sayer JA, Otto EA, O'Toole JF. et al. The centrosomal protein nephrocystin-6 is mutated in Joubert syndrome and activates transcription factor ATF4. Nat Genet 2006; 38 (06) 674-681
  • 82 Guo J, Jin G, Meng L. et al. Subcellullar localization of tumor-associated antigen 3H11Ag. Biochem Biophys Res Commun 2004; 324 (02) 922-930
  • 83 Dawe HR, Smith UM, Cullinane AR. et al. The Meckel-Gruber syndrome proteins MKS1 and meckelin interact and are required for primary cilium formation. Hum Mol Genet 2007; 16 (02) 173-186
  • 84 Smith UM, Consugar M, Tee LJ. et al. The transmembrane protein meckelin (MKS3) is mutated in Meckel-Gruber syndrome and the wpk rat. Nat Genet 2006; 38 (02) 191-196
  • 85 Otto EA, Tory K, Attanasio M. et al. Hypomorphic mutations in meckelin (MKS3/TMEM67) cause nephronophthisis with liver fibrosis (NPHP11). J Med Genet 2009; 46 (10) 663-670
  • 86 Verloes A, Lambotte C. Further delineation of a syndrome of cerebellar vermis hypo/aplasia, oligophrenia, congenital ataxia, coloboma, and hepatic fibrosis. Am J Med Genet 1989; 32 (02) 227-232
  • 87 Delous M, Baala L, Salomon R. et al. The ciliary gene RPGRIP1L is mutated in cerebello-oculo-renal syndrome (Joubert syndrome type B) and Meckel syndrome. Nat Genet 2007; 39 (07) 875-881
  • 88 Arts HH, Doherty D, van Beersum SEC. et al. Mutations in the gene encoding the basal body protein RPGRIP1L, a nephrocystin-4 interactor, cause Joubert syndrome. Nat Genet 2007; 39 (07) 882-888
  • 89 Cantagrel V, Silhavy JL, Bielas SL. et al; International Joubert Syndrome Related Disorders Study Group. Mutations in the cilia gene ARL13B lead to the classical form of Joubert syndrome. Am J Hum Genet 2008; 83 (02) 170-179
  • 90 Humbert MC, Weihbrecht K, Searby CC. et al. ARL13B, PDE6D, and CEP164 form a functional network for INPP5E ciliary targeting. Proc Natl Acad Sci U S A 2012; 109 (48) 19691-19696
  • 91 Gorden NT, Arts HH, Parisi MA. et al. CC2D2A is mutated in Joubert syndrome and interacts with the ciliopathy-associated basal body protein CEP290. Am J Hum Genet 2008; 83 (05) 559-571
  • 92 Doherty D, Parisi MA, Finn LS. et al. Mutations in 3 genes (MKS3, CC2D2A and RPGRIP1L) cause COACH syndrome (Joubert syndrome with congenital hepatic fibrosis). J Med Genet 2010; 47 (01) 8-21
  • 93 Tang Z, Lin MG, Stowe TR. et al. Autophagy promotes primary ciliogenesis by removing OFD1 from centriolar satellites. Nature 2013; 502 (7470): 254-257
  • 94 Ferrante MI, Giorgio G, Feather SA. et al. Identification of the gene for oral-facial-digital type I syndrome. Am J Hum Genet 2001; 68 (03) 569-576
  • 95 Davis EE, Zhang Q, Liu Q. et al; NISC Comparative Sequencing Program. TTC21B contributes both causal and modifying alleles across the ciliopathy spectrum. Nat Genet 2011; 43 (03) 189-196