CC BY 4.0 · Arq Neuropsiquiatr 2023; 81(01): 062-073
DOI: 10.1055/s-0042-1758445
View and Review

Impact of pharmacogenetics on aspirin resistance: a systematic review

Impacto da farmacogenética na resistência à aspirina: uma revisão sistemática
1   Universidade da Região de Joinville, Departamento de Medicina, Joinville SC, Brazil
,
1   Universidade da Região de Joinville, Departamento de Medicina, Joinville SC, Brazil
,
1   Universidade da Região de Joinville, Departamento de Medicina, Joinville SC, Brazil
,
1   Universidade da Região de Joinville, Departamento de Medicina, Joinville SC, Brazil
2   Universidade da Região de Joinville, Joinville Stroke Biobank, Joinville SC, Brazil
› Institutsangaben

Abstract

Background Pharmacogenetics promises better control of diseases such as cardiovascular disease (CVD). Acetylsalicylic acid, aspirin, prevents the formation of an activating agent of platelet aggregation and vasoconstriction, and it is used to prevent CVD. Nevertheless, patients may have treatment failure due to genetic variants that modify the metabolism of the drug causing aspirin resistance (AR).

Objectives To realize a systematic literature review to determine the impact of genetic variants on AR.

Methods Articles published in the MEDLINE/PubMed, Cochrane, Scopus, LILACS, and SCIELO databases were systematically screened. A total of 290 articles were identified and 269 articles were excluded because they did not comply with the previously established inclusion criteria. A total of 20 case-control studies and 1 cohort was included.

Results The genetic variants rs1126643 (ITGA2), rs3842787 (PTGS1), rs20417 (PTGS2), and rs5918 (ITGB3) were the most studied. As for relevance, of the 64 genetic variants evaluated by the articles, 14 had statistical significance (p < 0.05; 95% confidence interval [CI]) in at least one article. Among them, the following have had unanimous results: rs1371097 (P2RY1), rs1045642 (MDR1), rs1051931 and rs7756935 (PLA2G7), rs2071746 (HO1), rs1131882 and rs4523 (TBXA2R), rs434473 (ALOX12), rs9315042 (ALOX5AP), and rs662 (PON1), while these differ in real interference in AR: rs5918 (ITGB3), rs2243093 (GP1BA), rs1330344 (PTGS1), and rs20417 (PTGS2). As study limitations, we highlight the nonuniform methodologies of the analyzed articles and population differences.

Conclusion It is noteworthy that pharmacogenetics is an expanding area. Therefore, further studies are needed to better understand the association between genetic variants and AR.

Resumo

Antecedentes A farmacogenética promete melhorar o controle de doenças como as cardiovasculares. O ácido acetilsalicílico, a aspirina, previne a formação de um agente ativador da agregação plaquetária e vasoconstrição e é usado na prevenção de tais doenças. No entanto, os pacientes podem ter falha no tratamento devido a variantes genéticas que modificam o metabolismo da droga causando resistência à aspirina (RA).

Objetivos Realizar uma revisão sistemática da literatura para determinar o impacto das variantes genéticas na resistência à aspirina.

Métodos Artigos publicados nos bancos de dados MEDLINE/PubMed, Cochrane, Scopus, LILACS e SCIELO foram sistematicamente selecionados. Foram identificados 290 artigos e, destes, 269 artigos foram excluídos por não atenderem aos critérios de inclusão previamente estabelecidos. Um total de 20 estudos caso-controles e 1 coorte foi incluído.

Resultados As variantes genéticas rs1126643 (ITGA2), rs3842787 (PTGS1), rs20417 (PTGS2) e rs5918 (ITGB3) foram as mais estudadas. Quanto à relevância, das 64 variantes genéticas avaliadas pelos artigos, 14 tiveram significância estatística (p < 0,05; intervalo de confiança [IC] de 95%) em pelo menos um artigo. Entre eles, os seguintes tiveram resultados unânimes: rs1371097 (P2RY1), rs1045642 (MDR1), rs1051931 e rs7756935 (PLA2G7), rs2071746 (HO1), rs1131882 e rs4523 (TBXA2R), rs434473 (ALOX12), rs9315042 (ALOX5AP) e rs662 (PON1), enquanto estes diferiram na interferência real na RA: rs5918 (ITGB3), rs2243093 (GP1BA), rs1330344 (PTGS1) e rs20417 (PTGS2). Como limitações do estudo, destacam-se as metodologias não uniformes dos artigos analisados e as diferenças populacionais.

Conclusão Vale ressaltar que a farmacogenética é uma área em expansão. Portanto, mais estudos são necessários para entender melhor a associação entre variantes genéticas e RA.

Authors' Contributions

All authors contributed to data collection, information organization and article writing. All authors approved the final version.




Publikationsverlauf

Eingereicht: 28. September 2021

Angenommen: 22. November 2021

Artikel online veröffentlicht:
14. März 2023

© 2023. Academia Brasileira de Neurologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution 4.0 International License, permitting copying and reproduction so long as the original work is given appropriate credit (https://creativecommons.org/licenses/by/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

 
  • References

  • 1 Cardiovascular Diseases [Internet]. WHO | Regional Office for Africa. 2021 Available from: https://www.afro.who.int/health-topics/cardiovascular-diseases
  • 2 Nagelschmitz J, Blunck M, Kraetzschmar J, Ludwig M, Wensing G, Hohlfeld T. Pharmacokinetics and pharmacodynamics of acetylsalicylic acid after intravenous and oral administration to healthy volunteers. Clin Pharmacol 2014; 6: 51-59
  • 3 Derle E, Öcal R, Kibaroğlu S. et al. Aspirin resistance in cerebrovascular disease and the role of glycoprotein IIIa polymorphism in Turkish stroke patients. Blood Coagul Fibrinolysis 2016; 27 (02) 169-175
  • 4 Ozben S, Ozben B, Tanrikulu AM, Ozer F, Ozben T. Aspirin resistance in patients with acute ischemic stroke. J Neurol 2011; 258 (11) 1979-1986
  • 5 Kumar V, Cotran R, Robbins S. Basic pathology. 5th ed. Philadelphia, PA: Saunders; 1992. ;p:339–342.
  • 6 Urbanowicz T, Komosa A, Michalak M. et al. The incidence of aspirin resistance in heart transplantation recipients. Kardiochir Torakochirurgia Pol 2017; 14 (02) 115-119
  • 7 What are single nucleotide polymorphisms (SNPs)?: MedlinePlus Genetics [Internet]. Medlineplus.gov. 2021 [cited 3 January 2021]. Available from: https://medlineplus.gov/genetics/understanding/genomicresearch/snp/
  • 8 Yi X, Cheng W, Lin J, Zhou Q, Wang C. Interaction between COX-1 and COX-2 Variants Associated with Aspirin Resistance in Chinese Stroke Patients. J Stroke Cerebrovasc Dis 2016; 25 (09) 2136-2144
  • 9 Gallego-Fabrega C, Krupinski J, Fernandez-Cadenas I. Genestroke Consortium, Consorcio Español para el Estudio Genético del Ictus. Drug resistance and secondary treatment of ischaemic stroke: The genetic component of the response to acetylsalicylic acid and clopidogrel. Neurologia 2015; 30 (09) 566-573
  • 10 Dhamoon MS, Sciacca RR, Rundek T, Sacco RL, Elkind MS. Recurrent stroke and cardiac risks after first ischemic stroke: the Northern Manhattan Study. Neurology 2006; 66 (05) 641-646
  • 11 PubMed [Internet]. PubMed. 2021 [cited 3 January 2021]. Available from: https://pubmed.ncbi.nlm.nih.gov
  • 12 Cochrane Library [Internet]. Cochranelibrary.com. 2021 [cited 3 January 2021]. Available from: https://www.cochranelibrary.com
  • 13 Scopus, Elsevier [Internet]. Elsevier.com. 2021 [cited 3 January 2021]. Available from: https://www.elsevier.com/en-in/solutions/scopus
  • 14 LILACS [Internet]. Lilacs.bvsalud.org. 2021 [cited 3 January 2021]. Available from: https://lilacs.bvsalud.org/
  • 15 SciELO [Internet]. Scielo.org. 2021 [cited 3 January 2021]. Available from: https://scielo.org/en/
  • 16 Ministério da Saúde. ROBIS – Risk of Bias in Systematic Reviews: ferramenta para avaliar o risco de viés em revisões sistemáticas: orientações de uso. Brasilia. 2017
  • 17 Sharma V, Dadheech S, Kaul S, Jyothy A, Munshi A. Association of ALOX5AP1 SG13S114T/A variant with ischemic stroke, stroke subtypes and aspirin resistance. J Neurol Sci 2013; 331 (1-2): 108-113
  • 18 Timur AA, Murugesan G, Zhang L, Barnard J, Bhatt DL, Kottke-Marchant K. Multi-parameter assessment of platelet inhibition and its stability during aspirin and clopidogrel therapy. Thromb Res 2014; 134 (01) 96-104
  • 19 Yi X, Wang C, Zhou Q, Lin J. Interaction among COX-2, P2Y1 and GPIIIa gene variants is associated with aspirin resistance and early neurological deterioration in Chinese stroke patients. BMC Neurol 2017; 17 (01) 4
  • 20 Peng LL, Zhao YQ, Zhou ZY. et al. Associations of MDR1, TBXA2R, PLA2G7, and PEAR1 genetic polymorphisms with the platelet activity in Chinese ischemic stroke patients receiving aspirin therapy. Acta Pharmacol Sin 2016; 37 (11) 1442-1448
  • 21 Wang Z, Gao F, Men J, Yang J, Modi P, Wei M. Polymorphisms and high on-aspirin platelet reactivity after off-pump coronary artery bypass grafting. Scand Cardiovasc J 2013; 47 (04) 194-199
  • 22 Gao F, Wang ZX, Men JL, Ren J, Wei MX. Effect of polymorphism and type II diabetes on aspirin resistance in patients with unstable coronary artery disease. Chin Med J (Engl) 2011; 124 (11) 1731-1734
  • 23 Patel S, Arya V, Saraf A, Bhargava M, Agrawal CS. Aspirin and Clopidogrel Resistance in Indian Patients with Ischemic Stroke and its Associations with Gene Polymorphisms: A Pilot Study. Ann Indian Acad Neurol 2019; 22 (02) 147-152
  • 24 Wang BY, Tan SJ. Platelet glycoprotein IIIa gene polymorphism (Leu33Pro) and aspirin resistance in a very elderly Chinese population. Genet Test Mol Biomarkers 2014; 18 (06) 389-393
  • 25 Pamukcu B, Oflaz H, Onur I, Hancer V, Yavuz S, Nisanci Y. Impact of genetic polymorphisms on platelet function and aspirin resistance. Blood Coagul Fibrinolysis 2010; 21 (01) 53-56
  • 26 Voora D, Horton J, Shah SH, Shaw LK, Newby LK. Polymorphisms associated with in vitro aspirin resistance are not associated with clinical outcomes in patients with coronary artery disease who report regular aspirin use. Am Heart J 2011; 162 (01) 166-72 .e1
  • 27 Al-Azzam SI, Alzoubi KH, Khabour OF, Tawalbeh D, Al-Azzeh O. The contribution of platelet glycoproteins (GPIa C807T and GPIba C-5T) and cyclooxygenase 2 (COX-2G-765C) polymorphisms to platelet response in patients treated with aspirin. Gene 2013; 526 (02) 118-121
  • 28 Wang H, Sun X, Dong W. et al. Association of GPIa and COX-2 gene polymorphism with aspirin resistance. J Clin Lab Anal 2018; 32 (04) e22331
  • 29 Li XL, Cao J, Fan L. et al. Genetic polymorphisms of HO-1 and COX-1 are associated with aspirin resistance defined by light transmittance aggregation in Chinese Han patients. Clin Appl Thromb Hemost 2013; 19 (05) 513-521
  • 30 Fan L, Cao J, Liu L. et al. Frequency, risk factors, prognosis, and genetic polymorphism of the cyclooxygenase-1 gene for aspirin resistance in elderly Chinese patients with cardiovascular disease. Gerontology 2013; 59 (02) 122-131
  • 31 Chakroun T, Addad F, Yacoub S. et al. The cyclooxygenase-1 C50T polymorphism is not associated with aspirin responsiveness status in stable coronary artery disease in Tunisian patients. Genet Test Mol Biomarkers 2011; 15 (7-8): 513-516
  • 32 Sharma V, Kaul S, Al-Hazzani A, Alshatwi AA, Jyothy A, Munshi A. Association of COX-2 rs20417 with aspirin resistance. J Thromb Thrombolysis 2013; 35 (01) 95-99
  • 33 Sharma V, Kaul S, Al-Hazzani A. et al. Association of C3435T multi drug resistance gene-1 polymorphism with aspirin resistance in ischemic stroke and its subtypes. J Neurol Sci 2012; 315 (1-2): 72-76
  • 34 Carroll RC, Worthington RE, Craft RM. et al. Post interventional cardiology urinary thromboxane correlates with PlateletMapping detected aspirin resistance. Thromb Res 2010; 125 (04) e118-e122
  • 35 Yeo KK, Armstrong EJ, López JE. et al. Aspirin and clopidogrel high on-treatment platelet reactivity and genetic predictors in peripheral arterial disease. Catheter Cardiovasc Interv 2018; 91 (07) 1308-1317
  • 36 Strisciuglio T, Barbato E, De Biase C. et al. T2238C Atrial Natriuretic Peptide Gene Variant and the Response to Antiplatelet Therapy in Stable Ischemic Heart Disease Patients. J Cardiovasc Transl Res 2018; 11 (01) 36-41