Facial Plast Surg 2022; 38(06): 668-678
DOI: 10.1055/s-0042-1757758
Original Article

Tesla Facelifting Using Energy Devices during Rhytidectomy

Richard Gentile
1   Facial Plastic and Aesthetic Laser Center, Youngstown, Ohio
› Institutsangaben

Abstract

Tesla facelifting is the process of utilizing energy devices as surgical tools during rhytidectomy and neck lifting. Devices used for Tesla face and neck lifting include fiber lasers, radio frequency devices, high-frequency ultrasound, and plasma energy devices. Advantage of Tesla face and neck lifting include better visualization for surgical intervention due to reduced bleeding, better access to hard to access facial and neck locations, and long-term skin tightening from the subdermal energy treatment.



Publikationsverlauf

Artikel online veröffentlicht:
23. Dezember 2022

© 2022. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Population of the U.S. by sex and age 2017 Statistic. https://www.statista.com/statistics/241488/population-of-the-us-by-sex-and-age/ Population of the United States by sex and age 2017 There were about 11.35 million males between the ages of 20 and 24-years-old in the United States in
  • 2 Arnoczky SP, Aksan A. Thermal modification of connective tissues: basic science considerations and clinical implications. J Am Acad Orthop Surg 2000; 8 (05) 305-313
  • 3 Ross EV, Yashar SS, Naseef GS. et al. A pilot study of in vivo immediate tissue contraction with CO2 skin laser resurfacing in a live farm pig. Dermatol Surg 1999; 25 (11) 851-856
  • 4 le Lous M, Flandin F, Herbage D, Allain JC. Influence of collagen denaturation on the chemorheological properties of skin, assessed by differential scanning calorimetry and hydrothermal isometric tension measurement. Biochim Biophys Acta 1982; 717 (02) 295-300
  • 5 Hsu TS, Kaminer MS. The use of nonablative radiofrequency technology to tighten the lower face and neck. Semin Cutan Med Surg 2003; 22 (02) 115-123
  • 6 Barton JK, Rollins A, Yazdanfar S, Pfefer TJ, Westphal V, Izatt JA. Photothermal coagulation of blood vessels: a comparison of high-speed optical coherence tomography and numerical modelling. Phys Med Biol 2001; 46 (06) 1665-1678
  • 7 Gentile RD. . Smartlifting ™-A technological Innovation for Facial Rejuvenation. Cynosure white paper. Accessed September 18, 2022, at: www.dcanavan.com/PDFS/Collateral/Compendium.pdf
  • 8 Gentile RD. Smartlifting ™-A technological innovation for facial rejuvenation. Lasers Surg Med 2009
  • 9 Gentile RD. . LaserFacialSculpting™ Minimally Invasive Techniques for Facial Rejuvenation Utilizing the Smartlipo™ Nd:YAG Laser February 1, 2010. Accessed September 18, 2022, at: http://66.36.229.213/live/cynosureapp/Smartlipo_MPX_TP/smartlook_smartlifting/921-0187-000_r2_LaserFacialSculptingWP.pdf
  • 10 Gentile RD. SmartLifting fiber laser-assisted facial rejuvenation techniques. Facial Plast Surg Clin North Am 2011; 19 (02) 371-387
  • 11 Gentile RD. Laser-assisted neck-lift: high-tech contouring and tightening. Facial Plast Surg 2011; 27 (04) 331-345
  • 12 Dinh V. 2006. Low-Power Laser Therapy. Biomedical Photonics Handbook. CRC Press; , pp. 48-1-48-25
  • 13 Lubart R, Friedmann H, Lavie R. et al. A reasonable mechanism for visible light-induced skin rejuvenation. Lasers Med Sci 2007; 22 (01) 1-3
  • 14 Pereira AN, Eduardo CdeP, Matson E, Marques MM. Effect of low-power laser irradiation on cell growth and procollagen synthesis of cultured fibroblasts. Lasers Surg Med 2002; 31 (04) 263-267
  • 15 Rattan SI. Repeated mild heat shock delays ageing in cultured human skin fibroblasts. Biochem Mol Biol Int 1998; 45 (04) 753-759
  • 16 Watanabe S. Basics of laser application to dermatology. Arch Dermatol Res 2008; 300 (Suppl. 01) S21-S30
  • 17 Snoeckx LHEH, Cornelussen RN, Van Nieuwenhoven FA, Reneman RS, Van Der Vusse GJ. Heat shock proteins and cardiovascular pathophysiology. Physiol Rev 2001; 81 (04) 1461-1497
  • 18 Wilkinson ER. Textbook of Dermatology. Blackwell Scientific Publications; 1992
  • 19 Geronemus RG. Fractional photothermolysis: current and future applications. Lasers Surg Med 2006; 38 (03) 169-176
  • 20 Gilchrest BA. A review of skin ageing and its medical therapy. Br J Dermatol 1996; a 135 (06) 867-875
  • 21 Sadick NS. Update on non-ablative light therapy for rejuvenation: a review. Lasers Surg Med 2003; 32 (02) 120-128
  • 22 Goldberg DJ. Lasers for facial rejuvenation. Am J Clin Dermatol 2003; 4 (04) 225-234
  • 23 Capon A, Mordon S. Can thermal lasers promote skin wound healing?. Am J Clin Dermatol 2003; 4 (01) 1-12
  • 24 Stadelmann WK, Digenis AG, Tobin GR. Physiology and healing dynamics of chronic cutaneous wounds. Am J Surg 1998; 176 (2A, Suppl): 26S-38S
  • 25 Bowers W, Blaha M, Alkhyyat A. et al. Artificial human skin: cytokine, prostaglandin, Hsp70 and histological responses to heat exposure. J Dermatol Sci 1999; 20 (03) 172-182
  • 26 Kovalchin JT, Wang R, Wagh MS, Azoulay J, Sanders M, Chandawarkar RY. In vivo delivery of heat shock protein 70 accelerates wound healing by up-regulating macrophage-mediated phagocytosis. Wound Repair Regen 2006; 14 (02) 129-137
  • 27 Marshall H, Kind CN. Detection and cellular localization of stress-induced 72 kD heat shock protein in cultured Swiss 3T3 mouse fibroblasts. Toxicol In Vitro 1994; 8 (04) 545-548
  • 28 Ohtsuka K, Laszlo A. The relationship between hsp 70 localization and heat resistance. Exp Cell Res 1992; 202 (02) 507-518
  • 29 Souil E, Capon A, Mordon S, Dinh-Xuan AT, Polla BS, Bachelet M. Treatment with 815-nm diode laser induces long-lasting expression of 72-kDa heat shock protein in normal rat skin. Br J Dermatol 2001; 144 (02) 260-266
  • 30 Naitoh M, Hosokawa N, Kubota H. et al. Upregulation of HSP47 and collagen type III in the dermal fibrotic disease, keloid. Biochem Biophys Res Commun 2001; 280 (05) 1316-1322
  • 31 Tasab M, Jenkinson L, Bulleid NJ. Sequence-specific recognition of collagen triple helices by the collagen-specific molecular chaperone HSP47. J Biol Chem 2002; 277 (38) 35007-35012
  • 32 Verrico AK, Haylett AK, Moore JV. In vivo expression of the collagen-related heat shock protein HSP47, following hyperthermia or photodynamic therapy. Lasers Med Sci 2001; 16 (03) 192-198
  • 33 Verrico AK, Moore JV. Expression of the collagen-related heat shock protein HSP47 in fibroblasts treated with hyperthermia or photodynamic therapy. Br J Cancer 1997; 76 (06) 719-724
  • 34 Frank S, Oliver L, Lebreton-De Coster C. et al. Infrared radiation affects the mitochondrial pathway of apoptosis in human fibroblasts. J Invest Dermatol 2004; 123 (05) 823-831
  • 35 Hirano S, Shelden EA, Gilmont RR. HSP27 regulates fibroblast adhesion, motility, and matrix contraction. Cell Stress Chaperones 2004; 9 (01) 29-37
  • 36 Farber JL, Rubin E. Pathology. Lippincott Williams & Wilkins; 1998
  • 37 Paul M Three Dimensional Radiofrequecy Tissue Tightening. A proposed mechanism and applications for Bo. dy Contouring Aesth. Plast Surg (Oakv) 2011; 35: 87-95
  • 38 Mehta-Ambalal SR. Neocollagenesis and neoelastinogenesis: from the laboratory to the clinic. J Cutan Aesthet Surg 2016; 9 (03) 145-151
  • 39 Greenhalgh DG. The role of apoptosis in wound healing. Int J Biochem Cell Biol 1998; 30 (09) 1019-1030
  • 40 DiPietro LA, Burns AL. , Eds. 2003. Wound Healing: Methods and Protocols. Methods in Molecular Medicine. Totowa, NJ: Humana Press;
  • 41 Mirastschijski U, Haaksma CJ, Tomasek JJ, Agren MS. Matrix metalloproteinase inhibitor GM 6001 attenuates keratinocyte migration, contraction and myofibroblast formation in skin wounds. Exp Cell Res 2004; 299 (02) 465-475
  • 42 Hinz B. Masters and servants of the force: the role of matrix adhesions in myofibroblast force perception and transmission. Eur J Cell Biol 2006; 85 (3-4): 175-181
  • 43 Deodhar AK, Rana RE. Surgical physiology of wound healing: a review. J Postgrad Med 1997; 43 (02) 52-56