Subscribe to RSS
DOI: 10.1055/s-0042-1754342
Imaging of Structural Abnormalities of the Sacrum: The Old Faithful and Newly Emerging Techniques
Abstract
The sacrum and sacroiliac joints pose a long-standing challenge for adequate imaging because of their complex anatomical form, oblique orientation, and posterior location in the pelvis, making them subject to superimposition. The sacrum and sacroiliac joints are composed of multiple diverse tissues, further complicating their imaging. Varying imaging techniques are suited to evaluate the sacrum, each with its specific clinical indications, benefits, and drawbacks. New techniques continue to be developed and validated, such as dual-energy computed tomography (CT) and new magnetic resonance imaging (MRI) sequences, for example susceptibility-weighted imaging. Ongoing development of artificial intelligence, such as algorithms allowing reconstruction of MRI-based synthetic CT images, promises even more clinical imaging options.
Keywords
sacrum - sacroiliac joints - magnetic resonance imaging - dual-energy computed tomography - artificial intelligencePublication History
Article published online:
14 September 2022
© 2022. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Beckmann NM, Chinapuvvula NR. Sacral fractures: classification and management. Emerg Radiol 2017; 24 (06) 605-617
- 2 Teran-Garza R, Verdines-Perez AM, Tamez-Garza C. et al. Anatomical variations of the sacro-iliac joint: a computed tomography study. Surg Radiol Anat 2021; 43 (06) 819-825
- 3 Prassopoulos PK, Faflia CP, Voloudaki AE, Gourtsoyiannis NC. Sacroiliac joints: anatomical variants on CT. J Comput Assist Tomogr 1999; 23 (02) 323-327
- 4 El Rafei M, Badr S, Lefebvre G. et al. Sacroiliac joints: anatomical variations on MR images. Eur Radiol 2018; 28 (12) 5328-5337
- 5 Tok Umay S, Korkmaz M. Frequency of anatomical variation of the sacroiliac joint in asymptomatic young adults and its relationship with sacroiliac joint degeneration. Clin Anat 2020; 33 (06) 839-843
- 6 Demir M, Mavi A, Gümüsburun E, Bayram M, Gürsoy S, Nishio H. Anatomical variations with joint space measurements on CT. Kobe J Med Sci 2007; 53 (05) 209-217
- 7 Konin GP, Walz DM. Lumbosacral transitional vertebrae: classification, imaging findings, and clinical relevance. AJNR Am J Neuroradiol 2010; 31 (10) 1778-1786
- 8 Hanhivaara J, Määttä JH, Niinimäki J, Nevalainen MT. Lumbosacral transitional vertebrae are associated with lumbar degeneration: retrospective evaluation of 3855 consecutive abdominal CT scans. Eur Radiol 2020; 30 (06) 3409-3416
- 9 Castellvi AE, Goldstein LA, Chan DP. Lumbosacral transitional vertebrae and their relationship with lumbar extradural defects. Spine 1984; 9 (05) 493-495
- 10 Carrino JA, Campbell Jr PD, Lin DC. et al. Effect of spinal segment variants on numbering vertebral levels at lumbar MR imaging. Radiology 2011; 259 (01) 196-202
- 11 Apaydin M, Uluc ME, Sezgin G. Lumbosacral transitional vertebra in the young men population with low back pain: anatomical considerations and degenerations (transitional vertebra types in the young men population with low back pain). Radiol Med (Torino) 2019; 124 (05) 375-381
- 12 Shah M, Halalmeh DR, Sandio A, Tubbs RS, Moisi MD. Anatomical variations that can lead to spine surgery at the wrong level: part III lumbosacral spine. Cureus 2020; 12 (07) e9433
- 13 Sieper J, Rudwaleit M, Baraliakos X. et al. The Assessment of SpondyloArthritis international Society (ASAS) handbook: a guide to assess spondyloarthritis. Ann Rheum Dis 2009; 68 (Suppl. 02) ii1-ii44
- 14 Tuite MJ. Sacroiliac joint imaging. Semin Musculoskelet Radiol 2008; 12 (01) 72-82
- 15 Ryan LM, Carrera GF, Lightfoot Jr RW, Hoffman RG, Kozin F. The radiographic diagnosis of sacroiliitis. A comparison of different views with computed tomograms of the sacroiliac joint. Arthritis Rheum 1983; 26 (06) 760-763
- 16 Battistone MJ, Manaster BJ, Reda DJ, Clegg DO. Radiographic diagnosis of sacroiliitis–are sacroiliac views really better?. J Rheumatol 1998; 25 (12) 2395-2401
- 17 Bellabarba C, Stewart JD, Ricci WM, DiPasquale TG, Bolhofner BR. Midline sagittal sacral fractures in anterior-posterior compression pelvic ring injuries. J Orthop Trauma 2003; 17 (01) 32-37
- 18 Schicho A, Schmidt SA, Seeber K, Olivier A, Richter PH, Gebhard F. Pelvic X-ray misses out on detecting sacral fractures in the elderly—importance of CT imaging in blunt pelvic trauma. Injury 2016; 47 (03) 707-710
- 19 Lowe LH, Johanek AJ, Moore CW. Sonography of the neonatal spine: part 1, Normal anatomy, imaging pitfalls, and variations that may simulate disorders. AJR Am J Roentgenol 2007; 188 (03) 733-738
- 20 Meyers AB, Chandra T, Epelman M. Sonographic spinal imaging of normal anatomy, pathology and magnetic growing rods in children. Pediatr Radiol 2017; 47 (09) 1046-1057
- 21 Yoon HM, Byeon S-J, Hwang J-Y. et al. Sacrococcygeal teratomas in newborns: a comprehensive review for the radiologists. Acta Radiol 2018; 59 (02) 236-246
- 22 Gerber S, Ollivier L, Leclère J. et al. Imaging of sacral tumours. Skeletal Radiol 2008; 37 (04) 277-289
- 23 Lyders EM, Whitlow CT, Baker MD, Morris PP. Imaging and treatment of sacral insufficiency fractures. AJNR Am J Neuroradiol 2010; 31 (02) 201-210
- 24 Brenner DJ, Hall EJ. Computed tomography—an increasing source of radiation exposure. N Engl J Med 2007; 357 (22) 2277-2284
- 25 Simonetti I, Verde F, Palumbo L. et al. Dual energy computed tomography evaluation of skeletal traumas. Eur J Radiol 2021; 134: 109456
- 26 Wortman JR, Uyeda JW, Fulwadhva UP, Sodickson AD. Dual-energy CT for abdominal and pelvic trauma. Radiographics 2018; 38 (02) 586-602
- 27 Palm H-G, Lang P, Hackenbroch C, Sailer L, Friemert B. Dual-energy CT as an innovative method for diagnosing fragility fractures of the pelvic ring: a retrospective comparison with MRI as the gold standard. Arch Orthop Trauma Surg 2020; 140 (04) 473-480
- 28 Booz C, Nöske J, Albrecht MH. et al. Diagnostic accuracy of color-coded virtual noncalcium dual-energy CT for the assessment of bone marrow edema in sacral insufficiency fracture in comparison to MRI. Eur J Radiol 2020; 129: 109046
- 29 Chen M, Herregods N, Jaremko JL. et al. Bone marrow edema in sacroiliitis: detection with dual-energy CT. Eur Radiol 2020; 30 (06) 3393-3400
- 30 Yu L, Christner JA, Leng S, Wang J, Fletcher JG, McCollough CH. Virtual monochromatic imaging in dual-source dual-energy CT: radiation dose and image quality. Med Phys 2011; 38 (12) 6371-6379
- 31 Love C, Din AS, Tomas MB, Kalapparambath TP, Palestro CJ. Radionuclide bone imaging: an illustrative review. Radiographics 2003; 23 (02) 341-358
- 32 Scheyerer MJ, Hüllner M, Pietsch C, Werner CML, Veit-Haibach P. Evaluation of pelvic ring injuries using SPECT/CT. Skeletal Radiol 2015; 44 (02) 217-222
- 33 Slobodin G, Rimar D, Boulman N. et al. Acute sacroiliitis. Clin Rheumatol 2016; 35 (04) 851-856
- 34 Stürzenbecher A, Braun J, Paris S, Biedermann T, Hamm B, Bollow M. MR imaging of septic sacroiliitis. Skeletal Radiol 2000; 29 (08) 439-446
- 35 Wu MS, Chang SS, Lee SH, Lee CC. Pyogenic sacroiliitis—a comparison between paediatric and adult patients. Rheumatology (Oxford) 2007; 46 (11) 1684-1687
- 36 Henes FO, Nüchtern JV, Groth M. et al. Comparison of diagnostic accuracy of magnetic resonance imaging and multidetector computed tomography in the detection of pelvic fractures. Eur J Radiol 2012; 81 (09) 2337-2342
- 37 Nüchtern JV, Hartel MJ, Henes FO. et al. Significance of clinical examination, CT and MRI scan in the diagnosis of posterior pelvic ring fractures. Injury 2015; 46 (02) 315-319
- 38 Jans L, Egund N, Eshed I, Sudoł-Szopińska I, Jurik AG. Sacroiliitis in axial spondyloarthritis: assessing morphology and activity. Semin Musculoskelet Radiol 2018; 22 (02) 180-188
- 39 Laloo F, Herregods N, Varkas G. et al. MR signal in the sacroiliac joint space in spondyloarthritis: a new sign. Eur Radiol 2017; 27 (05) 2024-2030
- 40 Safaee MM, Carrera DA, Chin CT. et al. Diagnostic challenges in primary sacral tumors and the yield of computed tomography-guided needle biopsy in the modern era. World Neurosurg 2020; 138: e806-e818
- 41 Pillai S, Govender S. Sacral chordoma: a review of literature. J Orthop 2018; 15 (02) 679-684
- 42 Raya JG, Dietrich O, Reiser MF, Baur-Melnyk A. Methods and applications of diffusion imaging of vertebral bone marrow. J Magn Reson Imaging 2006; 24 (06) 1207-1220
- 43 Baur A, Stäbler A, Brüning R. et al. Diffusion-weighted MR imaging of bone marrow: differentiation of benign versus pathologic compression fractures. Radiology 1998; 207 (02) 349-356
- 44 Jones BC, Fayad LM. Musculoskeletal tumor imaging: focus on emerging techniques. Semin Roentgenol 2017; 52 (04) 269-281
- 45 Ahlawat S, Khandheria P, Subhawong TK, Fayad LM. Differentiation of benign and malignant skeletal lesions with quantitative diffusion weighted MRI at 3T. Eur J Radiol 2015; 84 (06) 1091-1097
- 46 Rao A, Sharma C, Parampalli R. Role of diffusion-weighted MRI in differentiating benign from malignant bone tumors. BJR Open 2019; 1 (01) 20180048
- 47 Del Grande F, Ahlawat S, Subhawong T, Fayad LM. Characterization of indeterminate soft tissue masses referred for biopsy: what is the added value of contrast imaging at 3.0 tesla?. J Magn Reson Imaging 2017; 45 (02) 390-400
- 48 Gezmis E, Donmez FY, Agildere M. Diagnosis of early sacroiliitis in seronegative spondyloarthropathies by DWI and correlation of clinical and laboratory findings with ADC values. Eur J Radiol 2013; 82 (12) 2316-2321
- 49 Beltran LS, Samim M, Gyftopoulos S, Bruno MT, Petchprapa CN. Does the addition of DWI to fluid-sensitive conventional MRI of the sacroiliac joints improve the diagnosis of sacroiliitis?. AJR Am J Roentgenol 2018; 210 (06) 1309-1316
- 50 Haacke EM, Mittal S, Wu Z, Neelavalli J, Cheng YCN. Susceptibility-weighted imaging: technical aspects and clinical applications, part 1. AJNR Am J Neuroradiol 2009; 30 (01) 19-30
- 51 Martín-Noguerol T, Montesinos P, Casado-Verdugo OL, Beltrán LS, Luna A. Susceptibility weighted imaging for evaluation of musculoskeletal lesions. Eur J Radiol 2021; 138: 109611
- 52 Deppe D, Hermann K-G, Proft F. et al. CT-like images of the sacroiliac joint generated from MRI using susceptibility-weighted imaging (SWI) in patients with axial spondyloarthritis. RMD Open 2021; 7 (02) e001656
- 53 Böker SM, Adams LC, Bender YY. et al. Evaluation of vertebral body fractures using susceptibility-weighted magnetic resonance imaging. Eur Radiol 2018; 28 (05) 2228-2235
- 54 Baraliakos X, Hoffmann F, Deng X, Wang Y-Y, Huang F, Braun J. Detection of Erosions in Sacroiliac joints of patients with axial spondyloarthritis using the magnetic resonance imaging volumetric interpolated breath-hold examination. J Rheumatol 2019; 46 (11) 1445-1449
- 55 Diekhoff T, Greese J, Sieper J, Poddubnyy D, Hamm B, Hermann KA. Improved detection of erosions in the sacroiliac joints on MRI with volumetric interpolated breath-hold examination (VIBE): results from the SIMACT study. Ann Rheum Dis 2018; 77 (11) 1585-1589
- 56 Chea P, Mandell JC. Current applications and future directions of deep learning in musculoskeletal radiology. Skeletal Radiol 2020; 49 (02) 183-197
- 57 Kitamura G. Deep learning evaluation of pelvic radiographs for position, hardware presence, and fracture detection. Eur J Radiol 2020; 130: 109139
- 58 Shenkman Y, Qutteineh B, Joskowicz L. et al. Automatic detection and diagnosis of sacroiliitis in CT scans as incidental findings. Med Image Anal 2019; 57: 165-175
- 59 Janz LBO, Chen M, Elewaut D. et al. MRI-based synthetic CT in the detection of structural lesions in patients with suspected sacroiliitis: comparison with MRI. Radiology 2021; 298 (02) 343-349