Synlett 2022; 33(19): 1929-1932
DOI: 10.1055/s-0042-1752344
letter

Heterogeneous Photocatalytic Radical Synthesis of Aryl Allyl Sulfones

Liang Wang
,
Ling-feng Zhang
This project was financially supported by the 333 High-Level Talent Project of Jiangsu Province, the Changzhou Sci & Tech Program (CJ20220021), the Jiangsu Key Laboratory of Advanced Catalytic ­Materials and Technology (BM2012110), the Advanced Catalysis and Green Manufacturing Collaborative Innovation Center of Changzhou University, and the Research Fund of the Changzhou Vocational Institute of Engineering (11120101120002, 11130300120001, and 11130900120004).


Abstract

A photocatalytic synthesis of aryl allyl sulfones by a radical cascade reaction from an aryl diazonium salt, DABCO·(SO2)2 and 3-bromoprop-1-ene has been developed. This reaction employed ­DABCO·(SO2)2 as the SO2 source and a polyaniline–graphitic carbon ­nitride–titanium dioxide composite as the photocatalyst. A series of substrates were tolerated, providing the corresponding products in good yields. Moreover, the photocatalyst could be readily recovered and reused several times with only a slight decrease in its catalytic activity.

Supporting Information



Publikationsverlauf

Eingereicht: 28. Juli 2022

Angenommen nach Revision: 06. September 2022

Artikel online veröffentlicht:
14. Oktober 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Simpkins NS. Sulphones in Organic Synthesis . Pergamon; Oxford: 1993
    • 1b El-Awa A, Noshi MN, du Jourdin XM, Fuchs PL. Chem. Rev. 2009; 109: 2315
    • 2a Reck F, Zhou F, Girardot M, Kern G, Eyermann CJ, Hales NJ, Ramsay RR, Gravestock MB. J. Med. Chem. 2005; 48: 499
    • 2b Pabba C, Gregg BT, Kitchen DB, Chen ZJ, Judkins A. Bioorg. Med. Chem. Lett. 2011; 21: 324
    • 3a Chu X.-Q, Meng H, Xu X.-P, Ji S.-J. Chem. Eur. J. 2015; 21: 11359
    • 3b Jiang L, Li T.-G, Zhou J.-F, Chuan Y.-M, Li H.-L, Yuan M.-L. Molecules 2015; 20: 8213
    • 3c Liu C.-R, Li M.-B, Cheng D.-J, Yang C.-F, Tian S.-K. Org. Lett. 2009; 11: 2543
    • 3d Rajender Reddy L, Hu B, Prashad M, Prasad K. Angew. Chem. Int. Ed. 2009; 48: 172
    • 4a Wu X.-S, Chen Y, Li M.-B, Zhou M.-G, Tian S.-K. J. Am. Chem. Soc. 2012; 134: 14694
    • 4b Jegelka M, Plietker B. Org. Lett. 2009; 11: 3462
    • 4c Ueda M, Hartwig JF. Org. Lett. 2009; 12: 92
    • 4d Wang T.-T, Wang F.-X, Yang F.-L, Tian S.-K. Chem. Commun. 2014; 50: 3802
    • 4e Chang M.-Y, Chen H.-Y, Wang H.-S. J. Org. Chem. 2017; 82: 10601
    • 4f Cai A, Kleij AW. Angew. Chem. Int. Ed. 2019; 58: 14944
    • 5a Li X, Xu X, Zhou C. Chem. Commun. 2012; 48: 12240
    • 5b Zhang G, Zhang L, Yi H, Luo Y, Qi X, Tung C.-H, Wu L.-Z, Lei A. Chem. Commun. 2016; 52: 10407
    • 5c Mao R, Yuan Z, Zhang R, Ding Y, Fan X, Wu J. Org. Chem. Front. 2016; 3: 1498
    • 5d Parisotto S, Garreffa G, Canepa C, Diana E, Pellegrino F, Priola E, Prandi C, Maurino V, Deagostino A. ChemPhotoChem 2017; 1: 56
    • 5e Kadari L, Palakodety RK, Yallapragada LP. Org. Lett. 2017; 19: 2580
    • 5f Lei X, Zheng L, Zhang C, Shi X, Chen Y. J. Org. Chem. 2018; 83: 1772
    • 5g Xu H, Zhang H, Tong Q.-X, Zhong J.-J. Org. Biomol. Chem. 2021; 19: 8227
    • 6a Khakyzadeh V, Wang Y.-H, Breit B. Chem. Commun. 2017; 53: 4966
    • 6b Long J, Shi L, Li X, Lv H, Zhang X. Angew. Chem. Int. Ed. 2018; 57: 13248
    • 6c Pagès L, Lemouzy S, Taillefer M, Monnier F. J. Org. Chem. 2021; 86: 15695
    • 6d Zeng J, Li D, Zhang S, Zhan Z. Org. Lett. 2022; 24: 1195
    • 6e Adenot A, Char J, von Wolff N, Lefevre G, Anthore-Dalion L, Cantat T. Chem. Commun. 2019; 55: 12924

      For selected examples, see:
    • 7a Nair A, Halder I, Volla C. Chem. Commun. 2022; 58: 6950
    • 7b Chen G, Xu J, Xiong B, Song H, Zhang X, Ma X, Lian Z. Org. Lett. 2022; 24: 1207
    • 7c Yang M, Chang X, Ye S, Ding Q, Wu J. J. Org. Chem. 2021; 86: 15177
    • 7d Chen Z, Zhang H, Zhou S, Cui X. Org. Lett. 2021; 23: 7992
    • 7e He F, Yao Y, Xie W, Wu J. Chem. Commun. 2020; 56: 9469
    • 7f Zhou K, Zhang J, Lai L, Cheng J, Sun J, Wu J. Chem. Commun. 2018; 54: 7459
    • 7g Liu T, Li Y, Lai L, Cheng J, Sun J, Wu J. Org. Lett. 2018; 20: 3605
    • 7h Ni B, Zhang B, Han J, Peng B, Shan Y, Niu T. Org. Lett. 2020; 22: 670
    • 7i Niu T.-f, Lin D, Xue L.-s, Jiang D.-y, Ni B.-q. Synlett 2018; 29: 364
  • 8 Zhang J, Zhou K, Qiu G, Wu J. Org. Chem. Front. 2019; 6: 36
    • 9a Ong W.-J, Tan L.-L, Ng YH, Yong S.-T, Chai S.-P. Chem. Rev. 2016; 116: 7159
    • 9b Zhou Z, Zhang Y, Shen Y, Liu S, Zhang Y. Chem. Soc. Rev. 2018; 47: 2298
    • 9c Savateev A, Ghosh I, König B, Antonietti M. Angew. Chem. Int. Ed. 2018; 57: 15936
    • 9d Savateev A, Antonietti M. ACS Catal. 2018; 8: 9790
    • 9e Xiao Y, Tian G, Li W, Xie Y, Jiang B, Tian C, Zhao D, Fu H. J. Am. Chem. Soc. 2019; 141: 2508
    • 9f Camussi I, Mannucci B, Speltini A, Profumo A, Milanese C, Malavasi L, Malavasi L, Quadrelli P. ACS Sustainable Chem. Eng. 2019; 7: 8176
    • 9g Ghosh I, Khamrai J, Savateev A, Shlapakov N, Antonietti M, König B. Science 2019; 365: 360
  • 10 Liu W, Wang C, Wang L. Ind. Eng. Chem. Res. 2017; 56: 6114
  • 11 Wang L, Wang Y, Chen Q, He M. Tetrahedron Lett. 2018; 59: 1489
  • 12 Wang L, Wang H, Wang Y, Shen M, Li S. Tetrahedron Lett. 2020; 61: 151962
  • 13 1-(Allylsulfonyl)-4-nitrobenzene (2a): Typical ProcedureA 25 mL flask equipped with a stirrer bar was charged with 4-nitrobenzenediazonium tetrafluoroborate (1a; 0.75 mmol, 1.5 equiv), DABCO (1 mmol, 2 equiv), 3-bromoprop-1-ene (0.5 mmol, 1 equiv), and PANI(40%)–g-C3N4–TiO2 (20 mg) in MeCN (5 mL). The mixture was then irradiated with a 30 W CFL (10 cm distance) and stirred at rt under N2 for 10 h. When the reaction was complete, the catalyst was collected by filtration and the mixture was extracted with EtOAc. The organic layer was dried (Na2SO4) and concentrated in vacuum, and the residue was purified by flash column chromatography (silica gel PE–EtOAc) to give a yellow solid; yield: 91.9 mg (81%).1H NMR (400 MHz, CDCl3): δ = 8.40 (d, J = 8.9 Hz, 2 H), 8.07 (d, J = 8.9 Hz, 2 H), 5.80 (ddt, J = 17.5, 10.1, 7.4 Hz, 1 H), 5.37 (dd, J = 10.2, 0.7 Hz, 1 H), 5.15 (dd, J = 17.1, 1.0 Hz, 1 H), 3.87 (d, J = 7.4 Hz, 2 H). 13C NMR (100 MHz, CDCl3) δ = 150.9, 143.7, 130.1, 125.6, 124.2, 123.9, 60.7. MS (ESI): m/z = 228.2 [M + H]+.