Synlett 2023; 34(07): 815-822
DOI: 10.1055/s-0042-1752339
cluster
Chemical Synthesis and Catalysis in India

A Brønsted Acid Catalyzed Easy Access to Conjugated Diene-­Diones from Tertiary Propargyl Alcohols and 1,3-Dicarbonyl ­Compounds

Gitumoni Kalita
a   Department of Chemistry, National Institute of Technology Meghalaya, Bijni Complex, Shillong 793003, Meghalaya, India
,
Snehadrinarayan Khatua
b   Center for Advance Studies, Department of Chemistry, North Eastern Hill University, Shillong 793022, Meghalaya, India
,
a   Department of Chemistry, National Institute of Technology Meghalaya, Bijni Complex, Shillong 793003, Meghalaya, India
c   Department of Chemistry, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India
› Author Affiliations
The Science and Engineering Research Board (SERB) is gratefully acknowledged for financial support to P.N.C. (sanction order no. SB/FT/CS-115/2014; dated 24/08/2015).


Dedicated to Late Mr. Balaram Chatterjee

Abstract

A simple protocol catalyzed by a Brønsted acid, trifluoromethanesulfonic acid (CF3SO3H), to synthesize conjugated diene-diones from easily accessible tertiary propargyl alcohols and 1,3-dicarbonyl compounds is described. Reactions are performed in an air atmosphere by using undried solvents with water being the environmentally benign side product of the process. Preliminary synthetic applications of the conjugated diene-diones in the formation of conjugated dieneones and furans are also reported herein.

Supporting Information



Publication History

Received: 30 May 2022

Accepted after revision: 07 July 2022

Article published online:
30 September 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Maiti S, Biswas S, Jana U. Synth. Commun. 2010; 41: 243
    • 1b Sanz R, Miguel D, Martínez A, Álvarez-Gutiérrez JM, Rodríguez F. Org. Lett. 2007; 9: 727
    • 1c Huang W, Wang J, Shen Q, Zhou X. Tetrahedron 2007; 63: 11636
    • 1d Yadav JS, Subba Reddy BV, Pandurangam T, Raghavendra Rao KV, Praneeth K, Narayana Kumar GG. K. S, Madavi C, Kunwar AC. Tetrahedron Lett. 2008; 49: 4296
    • 1e Arcadi A, Alfonsi M, Chiarini M, Marinelli F. J. Organomet. Chem. 2009; 694: 576
    • 1f Funabiki K, Komeda T, Kubota Y, Matsui M. Tetrahedron 2009; 65: 7457
    • 1g Yadav JS, Subba Reddy BV, Raghavendra Rao KV, Narender R. Tetrahedron Lett. 2009; 50: 3963
    • 1h Pan Y.-M, Zhao S.-Y, Ji W.-H, Zhan Z.-P. J. Comb. Chem. 2009; 11: 103
    • 1i Zhang M, Yang H, Cheng Y, Zhu Y, Zhu C. Tetrahedron Lett. 2010; 51: 1176
    • 1j Chatterjee PN, Roy S. Tetrahedron 2011; 67: 4569
    • 1k Cadierno V, Gimeno J, Nebra N. Adv. Synth. Catal. 2007; 349: 382
    • 2a Liu X.-T, Huang L, Zheng F.-J, Zhan Z.-P. Adv. Synth. Catal. 2008; 350: 2778
    • 2b Nishibayashi Y, Yoshikawa M, Inada Y, Milton MD, Hidai M, Uemura S. Angew. Chem. Int. Ed. 2003; 42: 2681
    • 2c Feng X, Tan Z, Chen D, Shen Y, Guo C.-C, Xiang J, Zhu C. Tetrahedron Lett. 2008; 49: 4110
    • 2d Ji W.-H, Pan Y.-M, Zhao S.-Y, Zhan Z.-P. Synlett 2008; 3046
    • 2e Cadierno V, Díez J, Gimeno J, Nebra N. J. Org. Chem. 2008; 73: 5852
  • 3 Cadierno V, Díez J, García-Garrido SE, Gimeno J, Nebra N. Adv. Synth. Catal. 2006; 348: 2125
  • 4 Tietze LF. Chem. Rev. 1996; 96: 115
  • 5 Kalita G, Paul D, Khatua S, Chatterjee PN. Catal. Lett. 2020; 150: 2132
    • 6a Paul D, Chatterjee PN. Eur. J. Org. Chem. 2020; 4705
    • 6b Kalita G, Deka N, Paul D, Thapa L, Dutta GK, Chatterjee PN. Synlett 2021; 32: 304
    • 7a Swaminathan S, Narayanan KV. Chem. Rev. 1971; 71: 429
    • 7b Lorber CY, Osborn JA. Tetrahedron Lett. 1996; 37: 853
    • 7c Suzuki T, Tokunaga M, Wakatsuki Y. Tetrahedron Lett. 2002; 43: 7531
  • 8 Typical procedure for the synthesis of 1,3-diphenyl-2-(1,3,3-triphenylallylidene)propane-1,3-dione (3a): CF3SO3H (10 mol%) was added to a solution of propargylic alcohol 1a (1.0 mmol) and 1,3-dicarbonyl compound 2a (1.1 mmol) in DCE solvent (1 mL). The reaction mixture was allowed to stir at room temperature (25 ℃) for the time specified in Table 2. After completion of the reaction as monitored by TLC, the solvent was evaporated under reduced pressure. The resulting crude product was then directly purified by column chromatography (silica gel 100-200, petroleum ether 60-80 °C/EtOAc) to afford 3a in 87% yield. 1H NMR (400 MHz, CDCl3, ppm): δ = 7.89-7.87 (m, 2 H), 7.63-7.61 (m, 2 H), 7.46-7.42 (m, 1 H), 7.36-7.32 (m, 2 H), 7.26-7.22 (m, 1 H), 7.16-7.05 (m, 10 H), 7.02-7.00 (m, 2 H), 6.94-6.88 (m, 3 H), 6.82-6.79 (m, 2 H), 6.48 (s, 1 H). 13C NMR (100 MHz, CDCl3, ppm): δ = 196.10, 194.62, 149.25, 148.21, 142.25, 139.68, 139.06, 138.03, 137.94, 137.35, 133.07, 132.86, 130.21, 129.72, 129.61, 128.83, 128.72, 128.64, 128.37, 128.26, 128.16, 128.07, 128.05, 128.01, 127.97, 127.30. HRMS: m/z calcd for C36H26O2 [M + H]+: 491.2010; found: 491.2012