RSS-Feed abonnieren
DOI: 10.1055/s-0042-1751561
Synthesis, Photophysical, and AIE Properties of 2H-Imidazole-Derived Push-Pull Fluorophores
The research was financially supported by the Russian Science Foundation (RSF), project No. 20-73-10077, https://www.rscf.ru/en/project/20-73-10077/ (chemical synthesis and photophysical studies) and by the Ministry of Science and Higher Education of the Russian Federation within the Priority-2030 Program of Ural Federal University (conceptualization).
Abstract
A four-stage method for the synthesis of 2H-imidazole-derived push-pull fluorophores was developed. The synthesized compounds are characterized by absorption in the range of 250–400 nm, emission of up to 617 nm, and quantum yields of up to 99%. Compounds bearing a tetraphenylethylene fragment demonstrated the AIE effect in a solution with a water fraction fw >90% and significant increase in the emission intensity of up to 20 times and quantum yields of up to 22%. The ICT states for these fluorophores were confirmed by calculating the excited state dipole moments (>23D). The reported synthetic method enables fine-tuning of the fluorescent properties for the developed photoactive molecular systems by varying donor fragments. The obtained compounds could be of particular interest in the design of photoactive organic and hybrid materials.
Key words
fluorophore - imidazole - aggregation induced emission - Suzuki–Miyaura coupling - photoredox-catalyzed deoxygenationSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0042-1751561.
- Supporting Information
Publikationsverlauf
Eingereicht: 12. Dezember 2023
Angenommen nach Revision: 02. Februar 2024
Artikel online veröffentlicht:
22. Februar 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Malytskyi V, Simon J.-J, Patrone L, Raimundo J.-M. RSC Adv. 2015; 5: 354
- 1b Pigot C, Noirbent G, Brunel D, Dumur F. Eur. Polym. J. 2020; 133: 109797
- 1c Verbitskiy EV, Rusinov GL, Chupakhin ON, Charushin VN. Dyes Pigm. 2020; 180: 108414
- 1d Kaur P, Singh K. Chem. Rec. 2022; 22: e202200024
- 1e Patil Y, Butenschön H, Misra R. Chem. Rec. 2023; 23: e202200208
- 1f Kulhánek J, Bureš F. Beilstein J. Org. Chem. 2012; 8: 25
- 2a Bureš F. RSC Adv. 2014; 4: 58826
- 2b Ko HM, Choi H, Paek S, Kim K, Song K, Lee JK, Ko J. J. Mater. Chem. 2011; 21: 7248
- 2c Samanta PK, Misra R. J. Appl. Phys. 2023; 133: 020901
- 2d Liu J, Gao W, Kityk IV, Liu X, Zhen Z. Dyes Pigm. 2015; 122: 74
- 2e Braveenth R, Chai KY. Materials (Basel) 2019; 12: 2646
- 2f Han J, Chen Y, Li N, Huang Z, Yang C. Aggregate 2022; 3: e182
- 3a Hao M, Chi W, Wang C, Xu Z, Li Z, Liu X. J. Phys. Chem. C 2020; 124: 16820
- 3b Niu H, Liu J, O’Connor HM, Gunnlaugsson T, James TD, Zhang H. Chem. Soc. Rev. 2023; 52: 2322
- 3c Wang H, Zhao E, Lam JW. Y, Tang BZ. Mater. Today 2015; 18: 365
- 3d Sasaki S, Drummen GP. C, Konishi G. J. Mater. Chem. C 2016; 4: 2731
- 3e Giel M, Hong Y. Aggregate 2023; 4: e336
- 4a Kachwal V, Tan J. Adv. Sci. (Weinh) 2023; 10: 2204848
- 4b Das AK, Goswami S. Sens. Actuators B Chem. 2017; 245: 1062
- 4c Sharath Kumar KS, Girish YR, Ashrafizadeh M, Mirzaei S, Rakesh KP, Hossein Gholami M, Zabolian A, Hushmandi K, Orive G, Kadumudi FB, Dolatshahi-Pirouz A, Thakur VK, Zarrabi A, Makvandi P, Rangappa KS. Coord. Chem. Rev. 2021; 447: 214135
- 4d Hong Y. Methods Appl. Fluoresc. 2016; 4: 022003
- 5a Tu Y, Zhao Z, Lam JW. Y, Tang BZ. Natl. Sci. Rev. 2021; 8: nwaa260
- 5b He Z, Ke C, Tang BZ. ACS Omega 2018; 3: 3267
- 6a Schnermann MJ, Lavis LD. Curr. Opin. Chem. Biol. 2023; 75: 102335
- 6b Lavis LD. Annu. Rev. Biochem. 2017; 86: 825
- 7a Ilhan H, Cakmak Y. Top. Curr. Chem. 2023; 381: 28
- 7b Feng X, Wei L, Liu Y, Chen X, Tian R. Adv. Healthc. Mater. 2023; 12: e2300537
- 7c Zhang J, Zhou M, Li X, Fan Y, Li J, Lu K, Wen H, Ren J. Talanta 2023; 254: 124133
- 7d Olesińska-Mönch M, Deo C. Chem. Commun. 2023; 59: 660
- 7e Wang Z, Ma J, Li C, Zhang H. Biosensors 2023; 13: 159
- 7f Zhou H, Ren T. Chem. Asian J. 2022; 17: e202200147
- 7g Hande PE, Shelke YG, Datta A, Gharpure SJ. ChemBioChem 2022; 23: e202100448
- 7h Wang K, Zhang J, Hu R, Liu C, Bartholome TA, Ge H, Li B. ACS Catal. 2022; 12: 2796
- 7i Neto BA. D, Correa JR, Spencer J. Chem. Eur. J. 2022; 28: e202103262
- 7j Riahin C, Mendis K, Busick B, Ptaszek M, Yang M, Stacey G, Parvate A, Evans JE, Traeger J, Hu D, Orr G, Rosenzweig Z. Sensors 2022; 22: 7218
- 7k Dong L, Peng H.-Q, Niu L.-Y, Yang Q.-Z. Top. Curr. Chem. 2021; 379: 18
- 8a Lama AD, Sestelo JP, Valencia L, Esteban-Gomez D, Sarandeses LA, Martinez MM. Dyes Pigm. 2022; 205: 110539
- 8b Chen G, Qiu Z, Tan J.-H, Chen W.-C, Zhou P, Xing L, Ji S, Qin Y, Zhao Z, Huo Y. Dyes Pigm. 2021; 184: 108754
- 8c Dey N, Kulhánek J, Bures F, Bhattacharya S. J. Org. Chem. 2021; 86: 14663
- 8d Hloušková Z, Bures F. ARKIVOC 2017; (iv): 330
- 9 Moseev TD, Varaksin MV, Virlova EA, Medvedeva MV, Svalova TS, Melekhin VV, Tsmokaluk AN, Kozitsina AN, Charushin VN, Chupakhin ON. Dyes Pigm. 2022; 202: 110251
- 10a Farhang M, Akbarzadeh AR, Rabbani M, Ghadiri AM. Polyhedron 2022; 227: 116124
- 10b D’Alterio MC, Casals-Cruañas È, Tzouras NV, Talarico G, Nolan SP, Poater A. Chem. Eur. J. 2021; 27: 13481
- 11 Kim SH, An JH, Lee JH. Org. Biomol. Chem. 2021; 19: 3735
- 12 Lakowicz JR, Masters BR. J. Biomed. Opt. 2008; 13: 029901
- 13 Porrès L, Holland A, Pålsson L.-O, Monkman AP, Kemp C, Beeby A. J. Fluoresc. 2006; 16: 267
- 14a Moseev TD, Varaksin MV, Gorlov DA, Charushin VN, Chupakhin ON. J. Org. Chem. 2020; 85: 11124
- 14b Lavrinchenko IA, Moseev TD, Seleznev YA, Varaksin MV, Tsmokaluk AN, Charushin VN, Chupakhin ON. Asian J. Org. Chem. 2023; 12: e202300008
- 15 Smyshliaeva LA, Varaksin MV, Slepukhin PA, Chupakhin ON, Charushin VN. Beilstein J. Org. Chem. 2018; 14: 2618
- 16 Zhao Z, Chen S, Lam JW. Y, Lu P, Zhong Y, Wong KS, Kwok HS, Tang BZ. Chem. Commun. 2010; 46: 2221