Synlett 2024; 35(14): 1728-1732
DOI: 10.1055/s-0042-1751550
letter

Synthesis of Heterodiarylmethanes via Metallaphotoredox Decarboxylative Arylation

Amanda Yanez
a   University of Ottawa, 75 Laurier Ave. E., Ottawa, Ontario, K1N 6N5, Canada
,
Alexandria D. M. Jeanneret
b   Paraza Pharma Inc., 2525 Ave. Marie-Curie, Saint Laurent, Québec, H4S 2E1, Canada
› Author Affiliations


Abstract

A metallaphotoredox-catalyzed synthesis of heterodiarylmethanes using mild reaction conditions, commercially available substrates, and bench-stable catalysts is demonstrated. Moderate yields are obtained, and further derivatization of the newly formed benzylic position is shown.

Supporting Information



Publication History

Received: 04 December 2023

Accepted after revision: 28 December 2023

Article published online:
26 January 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Chan AY, Perry IB, Bissonnette NB, Buksh BF, Edwards GA, Frye LI, Garry OL, Lavagnino MN, Li BX, Liang Y, Mao E, Millet A, Oakley JV, Reed NL, Sakai HA, Seath CP, MacMillan DW. C. Chem. Rev. 2021; 122: 1485
    • 1b Levin MD, Kim S, Toste FD. ACS Cent. Sci. 2016; 2: 293
  • 3 Mondal S, Panda G. RSC Adv. 2014; 4: 28317
  • 4 Moon PJ, Lundgren RJ. ACS. Catal. 2020; 10: 1742
  • 5 Yang K, Lu J, Li L, Luo S, Fu N. Chem. Eur. J. 2022; 28: e202202370
    • 6a Beil SB, Chen TQ, Intermaggio NE, MacMillan DW. C. Acc. Chem. Res. 2022; 55: 3481
    • 6b Gesmundo NJ, Tu NP, Sarris KA, Wang Y. ACS Med. Chem. Lett. 2023; 14: 521
    • 7a Vara BA, Patel NR, Molander GA. ACS Catal. 2017; 7: 3955
    • 7b Behnke NE, Sales ZS, Li M, Herrmann AT. J. Org. Chem. 2021; 86: 12945
    • 7c Tao M, Zeng L.-Y, Li W, Pu G, Jia J, Yao Q, Li X, He C.-Y. Adv. Synth. Catal. 2023; 365: 854
  • 8 Zuo Z, Ahneman DT, Chu L, Terrett JA, Doyle AG, MacMillan DW. C. Science 2014; 345: 437
  • 9 Le C, Wismer MK, Shi Z.-C, Zhang R, Conway DV, Li G, Vachal P, Davies IW, MacMillan DW. C. ACS Cent. Sci. 2017; 3: 647
  • 10 Oderinde MS, Varela-Alvarez A, Aquila B, Robbins DW, Johannes JW. J. Org. Chem. 2015; 80: 7642
  • 11 Prieto Kullmer CN, Kautzky JA, Krska SW, Nowak T, Dreher SD, MacMillan DW. C. Science 2022; 376: 532
  • 12 Pitzer L, Schäfers F, Glorius F. Angew. Chem. Int. Ed. 2019; 58: 8572
  • 13 Gulati U, Gandhi R, Laha JK. Chem. Asian. J. 2020; 15: 3135
  • 14 Nawratil S, Grypioti M, Menendez C, Mallet-Ladeira S, Lherbet C, Baltas M. Eur. J. Org. Chem. 2014; 654
  • 15 Khadka DB, Le QM, Yang SH, Van H TM, Le TN, Cho SH, Kwon Y, Lee K.-T, Lee E.-S, Cho W.-J. Bioorg. Med. Chem. 2011; 19: 1924
  • 16 Shook BC, Rassnick S, Wallace N, Crooke J, Ault M, Chakravarty D, Barbay JK, Wang A, Powell MT, Leonard K, Alford V, Scannevin RH, Carroll K, Lampron L, Westover L, Lim H.-K, Russell R, Branum S, Wells KM, Damon S, Youells S, Li X, Beauchamp DA, Rhodes K, Jackson PF. J. Med. Chem. 2012; 55: 1402
  • 17 Wang D, Xue X.-S, Houk KN, Shi Z. Angew. Chem. Int. Ed. 2018; 57: 16861
  • 18 Representative Experimental Procedure: 3-(Naphthalen-2-ylmethyl)pyridine (3a) To a vial charged with 2-(naphthalen-2-yl)acetic acid (100 mg, 532 μmol), 3-bromopyridine (57.5 μL, 585 μmol), dtbbpy (14.6 mg, 53.2 μmol), NiCl2(glyme) (11.9 mg, 53.2 μmol), K2CO3 (225 mg, 1.59 mmol), and {Ir[dF(CF3)ppy]2(dtbpy)}PF6 (5.96 mg, 5.32 μmol) was added anhydrous DMF (10.6 mL, 0.05 M). The headspace of the vial was purged with nitrogen for 10 s, placed in a Penn PhD Photoreactor M2 equipped with a 450 nm blue LED light and left to stir for 16 h under irradiation. To the reaction was added saturated NaHCO3 and was extracted with EtOAc (3×), the combined organic layers were washed with water (4×) then brine, dried over anhydrous Na2SO4, filtered, and evaporated. The residue was purified on a 10 g silica gel column using a Biotage Isolera automated purification system with a gradient elution of EtOAc/heptanes (0–100%) and a flow rate of 36 mL/min over 20 min to afford the title product 3a as a tan solid. Yield 64 mg (55%). 1H NMR (400 MHz, CDCl3): δ = 8.58 (d, J = 1.7 Hz, 1 H), 8.49 (dd, J = 4.9, 1.4 Hz, 1 H), 7.84–7.76 (m, 3 H), 7.63 (s, 1 H), 7.57 (d, J = 7.9 Hz, 1 H), 7.50–7.42 (m, 2 H), 7.31–7.27 (m, 2 H), 4.16 (s, 2 H). 13C NMR (101 MHz, CDCl3): δ = 150.3, 147.8, 137.4, 136.7, 136.6, 133.7, 132.3, 128.6, 127.8, 127.7, 127.4, 127.3, 126.4, 125.8, 123.7, 39.3. LC–MS (ESI): m/z [M + H]+ = 220.1, t R = 1.17 min; 5–100% MeCN/H2O (0.1% of 10 mM ammonium formate buffer) over 3 min.