Synlett 2024; 35(11): 1306-1310
DOI: 10.1055/s-0042-1751538
cluster
Japan/Netherlands Gratama Workshop

Thermally Stable Monoruthenium Acetylide Radical Species

Yuya Tanaka
a   Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
b   School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
,
Atsushi Yashiro
b   School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
,
Munetaka Akita
a   Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
b   School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
› Author Affiliations
This work was supported by JSPS KAKENHI (21K05211) and research grants from the Inamori Foundation, the Tokyo Kasei Chemical Promotion Foundation, the Toyota Physical and Chemical Research Institute, the Tokuyama Science Foundation, the Murata Science Foundation, the Iwatani Naoji Foundation, the TEPCO Memorial Foundation, and the Tanikawa Fund Promotion of Thermal Technology.


Abstract

Control of radical reactivity is regarded as an important concern in the fields of catalysis and materials sciences. Radical species generated from monoruthenium acetylide complexes are, in general, highly reactive, and therefore structural characterization of these species has remained elusive. In this paper, a spectroscopic and structural characterization of the cationic radical species of a monoruthenium diacetylide bearing a Ru tetraphosphine fragment, [trans-(Ar–SC≡C)2Ru(dppe)2]SbCl6 ([1]+SbCl6) [Ar: p-t-BuC6H4; dppe: 1,2-bis(diphenylphosphino)ethane], is presented. The formation of the radical species [1]+ is supported by the vis-NIR, IR, and ESR studies. Furthermore, the solid-state structure of [1]+ reveals a significant contribution of the cumulenic Ru=C=C=S resonance structure. Remarkably, the thermal stability of [1]+ results from the incorporation of the electron-donating (arylsulfanyl)ethynyl ligands and the highly sterically demanding dppe ligands as compared with a monoruthenium complex with less-bulky and less-electron-rich derivatives.

Supporting Information



Publication History

Received: 05 November 2023

Accepted after revision: 20 November 2023

Article published online:
04 January 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Costuas K, Rigaut S. Dalton Trans. 2011; 40: 5643
  • 2 Low PJ. Coord. Chem. Rev. 2013; 257: 1507
  • 3 Halet J.-F, Lapinte C. Coord. Chem. Rev. 2013; 257: 1584
  • 4 Tanaka Y, Akita M. Coord. Chem. Rev. 2019; 388: 334
  • 5 Mishiba K, Ono M, Tanaka Y, Akita M. Chem. Eur. J. 2016; 23: 2067
  • 6 Tanaka Y, Akita M. J. Organomet. Chem. 2018; 878: 30
  • 7 Tanaka Y, Ono M, Akita M. Chem. Lett. 2018; 47: 1296
  • 8 Oyama Y, Kawano R, Tanaka Y, Akita M. Dalton Trans. 2019; 48: 7432
  • 9 Tanaka Y, Takahashi H, Akita M. ACS Org. Inorg. Au 2022; 2: 327
  • 10 Tanaka Y, Kawano R, Akita M. Chem. Eur. J. 2022; 28: e202201358
  • 11 Rigaut S. Dalton Trans. 2013; 42: 15859
  • 12 Milan DC, Vezzoli A, Planje IJ, Low PJ. Dalton Trans. 2018; 47: 14125
  • 13 Tanaka Y, Kato Y, Tada T, Fujii S, Kiguchi M, Akita M. J. Am. Chem. Soc. 2018; 140: 10080
  • 14 Tanaka Y, Ohmura K, Fujii S, Tada T, Kiguchi M, Akita M. Inorg. Chem. 2020; 59: 13254
  • 15 Tanaka Y, Kato Y, Sugimoto K, Kawano R, Tada T, Fujii S, Kiguchi M, Akita M. Chem. Sci. 2021; 12: 4338
  • 16 Ogawa S, Chattopadhyay S, Tanaka Y, Ohto T, Tada T, Tada H, Fujii S, Nishino T, Akita M. Chem. Sci. 2021; 12: 10871
  • 17 Akita M, Tanaka Y. Coord. Chem. Rev. 2022; 461: 214501
  • 18 Park S, Jang J, Tanaka Y, Yoon HJ. Nano Lett. 2022; 22: 9693
  • 19 Tanaka Y, Okamoto A, Fujii S, Nishino T, Akita M. Inorg. Chim. Acta 2023; 544: 121211
  • 20 Tanaka Y, Bae Y, Ogasawara F, Suzuki K, Kobayashi S, Kaneko S, Fujii S, Nishino T, Akita M. Adv. Mater. Interfaces 2023; 10: 2202464
  • 21 Tanaka Y, Ishisaka T, Inagaki A, Koike T, Lapinte C, Akita M. Chem. Eur. J. 2010; 16: 4762
  • 22 Schauer PA, Low PJ. Eur. J. Inorg. Chem. 2012; 390
  • 23 Gückel S, Safari P, Bagher Hosseini Ghazvini SM, Hall MR, Gluyas JB. G, Kaupp M, Low PJ. Organometallics 2021; 40: 346
  • 24 Paul F, da Costa G, Bondon A, Gauthier N, Sinbandhit S, Toupet L, Costuas K, Halet J.-F, Lapinte C. Organometallics 2007; 26: 874
  • 25 Paul F, Malvolti F, da Costa G, Le Stang S, Justaud F, Argouarch G, Bondon A, Sinbandhit S, Costuas K, Toupet L, Lapinte C. Organometallics 2010; 29: 2491
  • 26 Paul F, Ellis BG, Bruce MI, Toupet L, Roisnel T, Costuas K, Halet J.-F, Lapinte C. Organometallics 2006; 25: 649
  • 27 Johno K, Tanaka Y, Koike T, Akita M. Dalton Trans. 2011; 40: 8089
  • 28 Yashiro A, Tanaka Y, Tada T, Fujii S, Nishino T, Akita M. Chem. Eur. J. 2021; 27: 9666
  • 29 Paul F, Toupet L, Roisnel T, Hamon P, Lapinte C. C. R. Chim. 2005; 8: 1174
  • 30 Tanaka Y, Morozumi N, Ohto T, Kaneko S, Naitoh Y, Tada H, Fujii S, Nishino T, Akita M. ChemRxiv 2022; preprint DOI: DOI: 10.26434/chemrxiv-2022-xfrpb-v2.
  • 31 CCDC 2299743 contains the supplementary crystallographic data for [1][SbCl6]. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
  • 32 Paul F, Toupet L, Thépot J.-Y, Costuas K, Halet J.-F, Lapinte C. Organometallics 2005; 24: 5464
  • 33 When employing magic blue as the oxidant, a UV-vis-NIR study yielded a spectrum similar to that obtained by using [FeCp2][BARF]. However, the ESI-MS spectrum displayed unidentified mass ion peaks.